
1

UNIT-I

OBJECT ORIENTED THINKING

DIFFERENT PARADIGMS FOR PROBLEM SOLVING

Paradigm definition

 A paradigm is a way in which a computer language looks at the problem to be solved.

Evolution of Paradigms

 Since the invention of computers, many programming approaches have been

developed. The primary motivation of doing so is to handle the increasing complexity of

programs and to make them reliable and maintainable.

The following are the different paradigms for problem solving,

1. Monolithic programming

 This is the main technique used in 1980’s.

 The program is written with a single function. A program is not divided into parts

i.e. statements are written in sequence.

 When the program size increases it failed to show the desired result in terms of bug

free, easy to maintain and reusable programs.

 The concept of sub programs does not exist, and hence is useful for small programs.

2. Procedure Oriented Programming

 It basically consists of writing a list of instructions for the computer to follow and

break down the code and organize these instructions into manageable segments or

groups known as functions.

 In this, the problem is viewed as a sequence of things to be done such as reading,

calculating and printing. A number of functions are written to accomplish these

tasks.

 In a multi function program, many important data items are placed as global so that

they may be accessed by all the functions. Each function may have its local data.

Drawbacks

 Global data are more vulnerable to an inadvertent change by a function.

2

 In a large program it is very difficult to identify what data is used by which function.

This provides an opportunity for bugs to creep in.

 It does not model real world problems very well. This is because functions are action

oriented and do not really corresponding to the elements of the problem.

Characteristics

 Emphasis is on doing things (algorithms).

 Large programs are divided into smaller programs known as functions.

 Most of the functions share global data.

 Data move openly around the system from function to function.

 Functions transform data from one form to another.

 Employs top·down approach in program design.

3. Object Oriented Programming

 This is the most recent concept among programming paradigms.

 It is an approach that provides a way of modularizing programs by creating

partitioned memory area for both data and functions that can be used as template for

creating copies of such modules on demand.

 The major motivating factor in the invention of object oriented approach is to remove

some of the flaws encountered in the procedural approach.

Features

 Emphasis is on data rather than procedure.

 Programs are divided into what are known as objects.

 Data structures are designed such that they characterize the objects.

 Functions that operate on the data of an object are tied together in the data structure.

 Data is hidden and cannot be accessed by external functions.

 Objects may communicate with each other through functions.

 New data and functions can be easily added whenever necessary.

 Follows bottom-up approach in program design.

NEED FOR OBJECT-ORIENTED PARADIGM

 The object oriented programming paradigm is a methodology for producing re usable

software components.

 It promotes efficient design and development of software systems using reusable

components that can be quickly and safely assembled into larger systems.

 It produces reusable code/objects because of encapsulation and inheritance.

3

 The data is protected because it can be altered only by the encapsulated methods.

 It is more efficient to write programs which use pre-defined objects.

 The storage structure and/or procedures within an object type could be altered if

required without affecting programs that make use of that object type.

 New functions can easily be added to objects by using inheritance

 The code produced is likely to contain fewer errors because pretested objects are

being used.

 Less maintenance effort will be required by the developer because objects can be

reused.

DIFFERENCE BETWEEN OBJECT ORIENTED PROGRAMMING AND

PROCEDURE ORIENTED PROGRAMMING

S.NO Object oriented Programming Procedure Oriented Programming

1 Emphasis is on data Emphasis is on doing things

2 Programs are divided into Objects Programs are divided into Functions

3 Employs Botton up approach Employs Top down approach

4 Modification potential is high Modification potential is low

5
Data is hidden and cannot be accessed by

external functions

Data is open and can be accessed by any

functions

6 Suitable for solving big problems Not Suitable for solving big problems

7 It needs more memory than POP It needs less memory

8
Supports Polymorphism, Inheritance,

abstraction and Encapsulation

Does not supports Polymorphism,

Inheritance, abstraction and Encapsulation

9 Example languages are C++, Java
Example languages are C,VB,FORTRAN,

COBOL

OVERVIEW OF OOP CONCEPTS

1. Abstraction

 Abstraction refers to the act of representing essential features without including the

background details or explanations.

 Classes use the concept of abstraction and are defined as a list of abstract attributes

such as size, weight and cost and functions to operate on these attributes.

 They encapsulate all the essential properties of the objects that are to be created.

 The attributes are sometimes called data numbers because they hold information.

 The functions that operate on these data are sometimes called methods or member

functions.

 Since the classes use the concept of data abstraction, they are known as Abstract Data

Types (ADT).

2. Encapsulation

4

 Encapsulation is the mechanism that binds together code and the data it manipulates,

and keeps both safe from outside interference and misuse.

 In an object-oriented language, code and data may be combined in such a way that a

self-contained "black box" is created.

 When code and data are linked together in this fashion, an object is created. In other

words, an object is the device that supports encapsulation.

 Within an object, code, data, or both may be private to that object or public.

 Private code or data is known to and accessible only by another part of the object.

That is, private code or data may not be accessed by a piece of the program that exists

outside the object.

 When code or data is public, other parts of your program may access it even though it

is defined within an object. Typically, the public parts of an object are used to provide

a controlled interface to the private elements of the object.

3. Polymorphism

 Object-oriented programming languages support polymorphism, which is

characterized by the phrase "one interface, multiple methods."

 In simple terms, polymorphism is the attribute that allows one interface to control

access to a general class of actions. The specific action selected is determined by the

exact nature of the situation.

 For example, you might have a program that defines three different types of stacks.

One stack is used for integer values, one for character values, and one for floating-

point values. Because of polymorphism, you can define one set of names, push() and

pop(), that can be used for all three stacks.

 Polymorphism helps reduce complexity by allowing the same interface to be used to

access a general class of actions. It is the compiler's job to select the specific action

(i.e., method) as it applies to each situation. You, the programmer, don't need to do

this selection manually. You need only remember and utilize the general interface.

4. Inheritance

 Inheritance is the process by which one object can acquire the properties of another

object.

 This is important because it supports the concept of classification. If you think about

it, most knowledge is made manageable by hierarchical classifications.

 For example, a Red Delicious apple is part of the classification apple, which in turn is

part of the fruit class, which is under the larger class food. Without the use of

classifications, each object would have to define explicitly all of its characteristics.

However, through the use of classifications, an object need only define those qualities

that make it unique within its class. It is the inheritance mechanism that makes it

possible for one object to be a specific instance of a more general case.

C++ BASICS

Origin of C++

 C++ began as an expanded version of C. The C++ extension was invented by Bjarne

Stroupstrup in 1979 at Bell laboratories He initially called the new language as “C with

Classes” but renamed it as “C++” in 1983.

STRUCTURE OF A C++ PROGRAM

Most C++ programs has the following general form,

5

#include

base class declarations

derived class declarations

non-member function prototypes

int main()

{

 //.....

}

non member function definition

Sample C++ Program

#include<iostream.h>

int main()

{

 int i;

cout<< “enter a number”:

cin>>i;

cout<<i<<” squared is“<<i*i<<endl;

return 0;

}

Output:

enter a number 10

10 squared is 100

Header File

 Header <iostream> is included. This header supports C++ style of I/O operations.

Input Operator

 cin>>i;

 This is an input statement and causes the program to wait for the user to type in a

number.

 Operator >> is known as extraction or getfrom operator. It takes the value from the

keyboard and assigns it to the variable on its right. Similar to scanf() inn C.

Output Operator

cout<< “enter a number”:

 This causes the string in quotation marks to be displayed on the screen.

Operator << is called insertion or putto operator. It inserts (or sends) the contents of

the variable on its right to the object on its left. Similar to print() in C.

DATA TYPES

There are 7 different data types in C++.They are

1. Character(char)

2. Integer(int)

3. Floating-point(float)

4. Double floating-point(double)

5. Valueless(void)

6. Boolean(bool)

6

7. Wide Character(Wchar_t)

6. bool Data Type

 C++ defines a built-in Boolean type called bool. Objects of type bool can store only

the values true or false, which are keywords defined by C++. Automatic conversions take

place which allow bool values to be converted to integers, and vice versa. Specifically, any

non-zero value is converted to true and zero is converted to false. The reverse also occurs;

true is converted to 1 and false is converted to zero.

General form: bool b1=true;

7.Wide Characters

 C++ define wide characters which are 16 bits long. To specify a wide character

precede the character with an L.

General form: wchar_t wc;

 wc = L'A';

Here, wc is assigned the wide-character constant equivalent of A. The type of wide characters

is wchar_t. In C, this type is defined in a header file and is not a built-in type. In C++,

wchar_t is built in.

Program 1: Write a C++ program to demonstrate different data types available in C++

#include <iostream>

using namespace std;

int main ()

{

 bool b = true;

 wchar_t w = L'A';

 int i;

 char ch;

 float fl;

 double d1;

 cout << "Enter a character: ";

 cin >> ch;

 cout << "\nYou entered: " << ch;

 cout << "\n\nEnter a floating-point number: ";

 cin >> fl;

 cout << "\nYou entered: " << fl;

 cout << "\n Enter a integer";

 cin >> i;

 cout << "\n You entered :" << i;

 cout << "\n Enter a double";

 cin >> d1;

 cout << "\n You entered :" << d1;

 cout << "\n boolean value is :" << b;

7

 cout << "\n Wide character value::" << w << '\n';

 return 0;

}

Output:

Enter a character: a

You entered: a

Enter a floating-

point number: 3345

You entered: 3345

 Enter a integer56

 You entered :56

 Enter a double57

 You entered :57

 boolean value is :1

 Wide character value::65

Program 2: Write a C++ program to know sizes of different data types available in C++

#include <iostream>

using namespace std;

int main()

{

 cout << "Size of char : " << sizeof(char) << " byte" << endl;

 cout << "Size of int : " << sizeof(int) << " bytes" << endl;

cout << "Size of short int : " << sizeof(short int) << " bytes" << endl;

cout << "Size of long int : " << sizeof(long int) << " bytes" << endl;

cout << "Size of signed long int : " << sizeof(signed long int) << " bytes" << endl;

cout << "Size of unsigned long int : "<< sizeof(unsigned long int)<< " bytes" << endl;

cout << "Size of float : " << sizeof(float) << " bytes" <<endl;

cout << "Size of double : " << sizeof(double) << " bytes" << endl;

cout << "Size of wchar_t : " << sizeof(wchar_t) << " bytes" <<endl;

 return 0;

}

8

Output:

Size of char : 1 byte

Size of int : 4 bytes

Size of short int : 2 bytes

Size of long int : 8 bytes

Size of signed long int : 8 bytes

Size of unsigned long int : 8 bytes

Size of float : 4 bytes

Size of double : 8 bytes

Size of wchar_t : 4 bytes

Data types size and Range

Modifying the Basic Types

 Except for type void, the basic data types may have various modifiers preceding

them. You use a modifier to alter the meaning of the base type to fit various situations more

precisely.

 You can apply the modifiers signed, short, long, and unsigned to integer base types.

You can apply unsigned and signed to characters. You may also apply long to double.

The list of modifiers is shown here:

1. signed

2. unsigned

3. long

4. short

9

VARIABLES

 A variable is a named location in memory that is used to hold a value that may be

modified by the program.

Declaration of a variable

 All variables must be declared before they can be used.

General form: type variable_list;

Here, type must be a valid data type plus any modifiers, and variable_list may consist of one

or more identifier names separated by commas.

Examples: int i,j,l;

 short int si;

 unsigned int ui;

 double balance, profit, loss;

Initialization of a variable

 We can assign a value to a variable.

General form: variable= expression;

Example: i=10;

 We can initialize a variable at the time of declaration.

General form: type variable= expression;

Example: int i=10;

Where Variables Are Declared

Variables will be declared in three basic places:

1. Inside functions (local variables)

2. In the definition of function parameters(formal parameters)

3. And outside of all functions (global variables)

1. Local Variables

 Variables that are declared inside a function are called local variables. Local variables

may be referenced only by statements that are inside the block in which the variables are

declared. In other words, local variables are not known outside their own code block.

 Local variables exist only while the block of code in which they are declared is

executing. That is, a local variable is created upon entry into its block and destroyed upon

exit. The most common code block in which local variables are declared is the function.

For example, consider the following two functions:

void func1(void)

{

int x;

x = 10;

}

void func2(void)

{

int x;

x = -199;

}

10

 The integer variable x is declared twice, once in func1() and once in func2(). The x

in func1() has no bearing on or relationship to the x in func2(). This is because each x is

known only to the code within the block in which it is declared.

Program 1: Write a C++ program to demonstrate Local Variables

#include <iostream>

using namespace std;

int main()

{

float f;

double d;

cout << "Enter two floating point numbers: ";

cin >> f >> d;

cout << "Enter a string: ";

char str[80]; // str declared here, just before 1st use

cin >> str;

cout <<"printing received values"<<endl<< f << " " << d << " " << str;

return 0;

}

Output:

Enter two floating point numbers: 9.9

17.21

Enter a string: keerthi

printing received values

9.9 17.21 keerthi

Important difference between C and C++

 An important difference between C and C++ is when local variables can be declared.

In C89, you must declare all local variables used within a block at the start of that block. You

cannot declare a variable in a block after an "action" statement has occurred. For example, in

C89, this fragment is incorrect:

/* Incorrect in C89. OK in C++. */

int f()

{

int i;

i = 10;

int j; /* won't compile as a C program */

j = i*2;

return j;

}

 In a C89 program, this function is in error because the assignment intervenes between

11

the declaration of i and that of j. However, when compiling it as a C++ program, this

fragment is perfectly acceptable. In C++ (and C99) you may declare local variables at any

point within a block—not just at the beginning.

2. Formal Parameters

 If a function is to use arguments, it must declare variables that will accept the values

of the arguments. These variables are called the formal parameters of the function. They

behave like any other local variables inside the function. As shown in the following program

fragment, their declarations occur after the function name and inside parentheses:

/* Return 1 if c is part of string s; 0 otherwise */

int is_in(char *s, char c)

{

while(*s)

if(*s==c) return 1;

else s++;

return 0;

}

 The function is_in() has two parameters: s and c. This function returns 1 if the

character specified in c is contained within the string s; 0 if it is not.

3. Global Variables

 Unlike local variables, global variables are known throughout the program and may

be used by any piece of code. Also, they will hold their value throughout the program's

execution. You create global variables by declaring them outside of any function. Any

expression may access them, regardless of what block of code that expression is in.

Program 2: Write a C++ program to demonstrate Global Variables

#include <iostream>

using namespace std;

int count; /* count is global */

void func1(void);

void func2(void);

int main(void)

{

count = 100;

func1();

return 0;

}

void func1(void)

{

int temp;

temp = count;

cout<<"count is (from func1)"<< count; /* will print 100 */

func2();

}

void func2(void)

{

12

int temp;

temp = count;

cout<<"count is (from func2)"<< count; /* will print 100 */

}

Output:

count is (from func1)100count is (from func2)100

OPERATORS

 C++ is rich in built-in operators. There are four main classes of operators: arithmetic,

relational, logical, and bitwise. In addition, there are some special operators for particular

tasks.

1. Arithmetic Operators

 These are defined to perform basic arithmetic operations. The operators +, −, *, and /

work as they do in most other computer languages. You can apply them to almost any built-in

data type.

Assume variable A holds 10 and variable B holds 20

 Both the increment and decrement operators may either precede (prefix) or follow

(postfix) the operand. For example,

 x = x+1;

 can be written

 ++x;

 or

 x++;

 There is, however, a difference between the prefix and postfix forms when you use

these operators in an expression. When an increment or decrement operator precedes its

operand, the increment or decrement operation is performed before obtaining the value of the

operand for use in the expression. If the operator follows its operand, the value of the operand

is obtained before incrementing or decrementing it. For instance,

 x = 10;

 y = ++x;

 sets y to 11. However, if you write the code as

 x = 10;

 y = x++;

 y is set to 10. Either way, x is set to 11; the difference is in when it happens.

13

Precedence of the Arithmetic Operators

PROGRAM 3: ARITHEMATIC OPERATORS

#include <iostream>

#include<conio.h>

using namespace std;

int main()

{

 int num1, num2, res;

cout<<"Enter any two number: ";

 cin>>num1>>num2;

res = num1 + num2;

 cout<<"\n";

 cout<<num1<<" + "<<num2<<" = "<<res<<endl;

res = num1 - num2;

 cout<<num1<<" - "<<num2<<" = "<<res<<endl;

res = num1 * num2;

 cout<<num1<<" * "<<num2<<" = "<<res<<endl;

res = num1 / num2;

 cout<<num1<<" / "<<num2<<" = "<<res<<endl;

res = num1 % num2;

 cout<<num1<<" % "<<num2<<" = "<<res<<endl;

 getch();

}

OUTPUT:

Enter any two number: 2

3

2 + 3 = 5

2 - 3 = -1

2 * 3 = 6

2 / 3 = 0

2 % 3 = 2

2. Relational Operators

 Relational operators refer to the relationships that values can have with one another.

The result of relational operators is either true or false.

14

Assume variable A holds 10 and variable B holds 20

PROGRAM 4: RELATIONAL OPERATORS

#include <iostream>

#include<conio.h>

using namespace std;

int main()

{

 int p, q;

 int res;

 cout<<"Enter any two number: ";

 cin>>p>>q;

 cout<<"\n";

 cout<<"p q p<q p<=q p==q p>q p>=q p!=q\n\n";

 res = p<q;

 cout<<p<<" "<<q<<" "<<res<<" ";

 res = p<=q;

 cout<<res<<" ";

 res = p==q;

 cout<<res<<" ";

 res = p>q;

 cout<<res<<" ";

 res = p>=q;

 cout<<res<<" ";

 res = p!=q;

 cout<<res<<endl;

 getch();

}

15

OUTPUT:

Enter any two number: 3 4

p q p<q p<=q p==q p>q p>=q p!=q

3 4 1 1 0 0 0 1

3. Logical Operators
 Logical refers to the ways these relationships can be connected or combined. The

result of logical operators is either true or false.

Assume variable A holds 1 and variable B holds 0

The truth table for the logical operators is

Precedence of the Relational and Logical operators:

PROGRAM 5: LOGICAL OPERATORS

#include <iostream>

#include<conio.h>

using namespace std;

int main()

{

 int res;

 res = (6 <= 6) || (5 <3);

 cout<<res<<endl;

 res = (6 <= 6) && (5 < 3);

 cout<<res<<endl;

 res = !(6 <= 6);

16

 cout<<res<<endl;

 res = !(5 > 9);

 cout<<res<<endl;

 getch();

}

OUTPUT:

1

0

0

1

4. Bitwise Operators

 C++ supports a full complement of bitwise operators. Bitwise operation refers to

testing, setting, or shifting the actual bits in a byte or word, which correspond to the char and

int data types and variants. You cannot use bitwise operations on float, double, long double,

void, bool, or other, more complex types.

 Bitwise operations most often find application in device drivers—such as modem

programs, disk file routines, and printer routines — because the bitwise operations can be

used to mask off certain bits, such as parity.

 Assume if A = 60; and B = 13; now in binary format they will be as follows:

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

 You can combine several operations together into one expression, as shown here:

10>5 && !(10<9) || 3<=4

Assume variable A holds 60 and variable B holds 13

17

PROGRAM 6: BITWISE OPERATORS

#include <iostream>

#include<conio.h>

using namespace std;

int main()

{

 unsigned int a = 60; // 60 = 0011 1100

 unsigned int b = 13; // 13 = 0000 1101

 int c = 0;

 c = a & b; // 12 = 0000 1100

 cout<<"a = 0011 1100 (60)\tand\tb = 0000 1101 (13)\n\n";

 cout<<"a & b = "<<c<<endl;

c = a | b; // 61 = 0011 1101

 cout<<"a | b = "<<c<<endl;

 c = a ^ b; // 49 = 0011 0001

 cout<<"a ^ b = "<<c<<endl;

 c = ~a; // -61 = 1100 0011

 cout<<"~a = "<<c<<endl;

 getch();

}

OUTPUT:

a = 0011 1100 (60) and b = 0000 1101 (13)

a & b = 12

a | b = 61

a ^ b = 49

~a = -61

Special operators

a. The ? Operator

 C++ contains a very powerful and convenient operator that replaces certain statements

of the if-then-else form. The ternary operator ? takes the general form

 Exp1 ? Exp2 : Exp3;

where Exp1, Exp2, and Exp3 are expressions.

 The ? operator works like this: Exp1 is evaluated. If it is true, Exp2 is evaluated and

becomes the value of the expression. If Exp1 is false, Exp3 is evaluated and its value becomes

the value of the expression.

For example,

 x = 10;

 y = x>9 ? 100 : 200;

y is assigned the value 100. If x had been less than 9, y would have received the value

200.

18

b. &(the address of) Pointer Operators

 It is a unary operator that returns the memory address of its operand.

Example: m = &count;

 places into m the memory address of the variable count.

c. *(at address) Pointer Operators

 It is a unary operator that returns the value of the variable located at the address that

follows it.

For example, if m contains the memory address of the variable count,

 q = *m;

places the value of count into q. Now q has the value 100 because 100 is stored at location

2000, the memory address that was stored in m.

d. sizeof

 sizeof is a unary compile-time operator that returns the length, in bytes, of the variable

or parenthesized type-specifier that it precedes.

Example: sizeof(int) will display 4

e. The Comma Operator

 The comma operator strings together several expressions. The left side of the comma

operator is always evaluated as void. This means that the expression on the right side

becomes the value of the total comma-separated expression.

For example,

 x = (y=3, y+1);

first assigns y the value 3 and then assigns x the value 4.

f. The Dot (.) and Arrow (>) Operators

 The . (dot) and the >(arrow) operators access individual elements of structures and

unions. In C++, the dot and arrow operators are also used to access the members of a class.

 The dot operator is used when working with a structure or union directly. The arrow

operator is used when a pointer to a structure or union is used.

struct employee

{

char name[80];

int age;

float wage;

} emp;

struct employee *p = &emp; /* address of emp into p */

you would write the following code to assign the value 123.23 to the wage member of

structure variable emp:

emp.wage = 123.23;

However, the same assignment using a pointer to emp would be

p->wage = 123.23;

g. The [] and () Operators

 Parentheses are operators that increase the precedence of the operations inside them.

19

Square brackets perform array indexing

 s[3] = 'X';

h. The Assignment Operator

 You can use the assignment operator within any valid expression. C++ uses a single

equal sign to indicate assignment

General form : variable_name = expression;

 Operators Precedence in C++

EXPRESSIONS

 An expression in C++ is any valid combination of Operators, constants, and variables.

Expressions 1nay be of the following seven types:

 Constant expressions

 Integral expressions

 Float expressions

 Point.er expressions

 Relational expressions

 Logical expressions

 Bitwise expressions

Constant Expressions

 Constant Expressions consist of only constant va1ues.

Examples: 15

 20 + 5 / 2.0

 'x'

Integral Expressions

 Integral Expressions are those which produce integer results after implementing all

the automatic and explicit type conversions.

Examples: m

 m * n -5

 m • 'x'

20

 5 + int(2.0)

 where m and n are integer variables.

Float Expressions

 Float Expressions are those which, after all conversions, produce floating-point

results.

Examples: x + y

 x * y / 10

 5 * float(10)

 10.75

 where x and y are floating-point variables.

Pointer Expressions

 Pointer Expressions produce address values.

Examples: &m

 ptr

 ptr + l

 “xyz”

 where m is a variable and ptr is a pointer.

Relational Expressions

 Relational Expressions yield results of type bool which takes a value true or false.

Examples: x<=y

 a+b == c+d

 m+-n > 100

 When arithmetic expressions are used on either side of a relational operator, they will

be evaluated first and then the results compared. Relational expressions are also known as

Boolean expressions.

Logical Expressions

 Logical Expressions combine two or more relationa1 expressions and produces bool

type results.

Examples: a>b && x0010

 x==10 || y==5

Bitwise Expressions

 Bitwise Expressions are used to manipulate data at bit level. They are basically used

for testing or shifting bits.

Examples: x << 3 // Shift three bit position to left

 y >>1 // Shift one bit position to right

Shift operators are often used for multiplication and division by powers of two.

 ANSI C++ has introduced what ore termed as operator keyword that can be used as

alternative representation for operator symbols.

Special Assignment Expressions

Chained Assignment

 x=(y=10);

 or

 x=y=10;

First 10 is assigned to y and then to x.

21

 A chained statement cannot be used to initialize variables at the time of declaration.

For instance, the statement

 float a =b =12.34;

 is illegal. This may be written as

 float a=12.34,b=12.34

Embedded Assignment

 x= (y= 50) + 10 ;

(y = 50) is an assignment expression known as embedded assignment. Here, the value 50 is

assigned to y and then the result 50+ 10 = 60 is assigned to x. This statement is identical to

 y = 50;

 x =y + 10;

Compound Assignment

 Like C, C+-+ supports a compound assignment operator which is a combination of

the assignment operator with a binary arithmetic operator. For example, the simple

assignment statement

 x= x + 10;

may be written as

 x+= 10;

 The operator += is known as compound assignment operator or short-hand

assignment operator. The general form of the compound assignment operator is:

 Variable1 op= variable2;

where op is a binary arithmetic operator. This means that

variable1 = variable op variable2;

ORDER OF EVALUATION OF EXPRESSIONS

 C++ does not specify the order in which the sub expressions of an expression are

evaluated. This leaves the compiler free to rearrange an expression to produce more optimal

code. However, it also means that your code should never rely upon the order in which sub

expressions are evaluated. For example, the expression

 x = f1() + f2();

does not ensure that f1() will be called before f2().

TYPE CONVERSION IN EXPRESSIONS

 When constants and variables of different types are mixed in an expression, they are

all converted to the same type. The compiler converts all operands up to the type of the

largest operand, which is called type promotion.

 First, all char and short int values are automatically elevated to int. (This process is

called integral promotion.) Once this step has been completed, all other conversions are done

operation by operation, as described in the following type conversion algorithm:

 IF an operand is a long double

 THEN the second is converted to long double

 ELSE IF an operand is a double

 THEN the second is converted to double

 ELSE IF an operand is a float

 THEN the second is converted to float

 ELSE IF an operand is an unsigned long

22

 THEN the second is converted to unsigned long

 ELSE IF an operand is long

 THEN the second is converted to long

 ELSE IF an operand is unsigned int

 THEN the second is converted to unsigned int

Additional special case: If one operand is long and the other is unsigned int, and if the value

of the unsigned int cannot be represented by a long, both operands are converted to unsigned

long.

Example:

 First, the character ch is converted to an integer. Then the outcome of ch/i is

converted to a double because f*d is double. The outcome of f+i is float, because f is a float.

The final result is double.

Casts

 You can force an expression to be of a specific type by using a cast.

General form : (type) expression

 where type is a valid data type.

Example:

 To make sure that the expression x/2 evaluates to type float, write (float) x/2

PROGRAM: TYPE CONVERSION

#include <iostream>

#include<conio.h>

using namespace std;

int main()

{

 float res;

 float f1=15.5, f2=2;

res = (int)f1/(int)f2;

 cout<<res<<endl;

res = (int)(f1/f2);

 cout<<res<<endl;

res = f1/f2;

 cout<<res;

 getch();

23

}

OUTPUT:

7

7

7.75

FLOW CONTROL STATEMENTS

A) SELECTION STATEMENTS

 C++ supports two types of selection statements:

a) if

b) switch.

if

The general form of the if statement is

 if (expression)

 statement;

 else

 statement;

 where a statement may consist of a single statement, a block of statements, or nothing

(in the case of empty statements). The else clause is optional.

 If expression evaluates to true (anything other than 0), the statement or block that

forms the target of if is executed; otherwise, the statement or block that is the target of else

will be executed, if it exists. Remember, only the code associated with if or the code

associated with else executes, never both.

 The conditional statement controlling if must produce a scalar result. A scalar is an

integer, character, pointer, or floating-point type. In C++, it may also be of type bool.

PROGRAM: IF

#include <iostream>

using namespace std;

int main ()

{

 int magic; /* magic number */

 int guess; /* user's guess */

 magic = rand (); /* generate the magic number */

 cout<<"Guess the magic number: "<<endl;

 cin>>guess;

 if (guess == magic)

 cout<<"** Right **";

 return 0;

}

OUTPUT:

Guess the magic number:

777

24

PROGRAM: IF ELSE IF

#include <iostream>

using namespace std;

int main ()

{

 int magic; /* magic number */

 int guess; /* user's guess */

 magic = rand (); /* generate the magic number */

 cout << "Guess the magic number: " << endl;

 cin >> guess;

 if (guess == magic)

 cout << "** Right **";

 else

 cout<<"Wrong";

 return 0;

}

OUTPUT:

Guess the magic number:

897

Wrong

PROGRAM: IF –ELSE-IF STATEMENT

#include <iostream>

#include<conio.h>

using namespace std;

int main()

{

 int num;

 cout<<"Enter a number: ";

 cin>>num;

 if(num%2==0)

 {

 cout<<"You entered an even number";

 }

 else

 {

 cout<<"You entered an odd number";

 }

 getch();

}

OUTPUT:

Enter a number: 21

You entered an odd number

NESTED ifs

25

 A nested if is an if that is the target of another if or else. Nested ifs are very common

in programming. In a nested if, an else statement always refers to the nearest if statement that

is within the same block as the else and that is not already associated with an else.

Example,

 if(i)

 {

 if(j) statement 1;

 if(k) statement 2; /* this if */

 else statement 3; /* is associated with this else */

 }

 else statement 4; /* associated with if(i) */

 Standard C++ suggests that at least 256 levels of nested ifs be allowed in a C++

program which 15 in C language.

PROGRAM: NESTED IF

#include <iostream>

using namespace std;

int main ()

{

 int magic; /* magic number */

 int guess; /* user's guess */

 magic = rand (); /* generate the magic number */

 cout << "Guess the magic number: " << endl;

 cin >> guess;

 if (guess == magic)

 {

 cout<<"** Right **"<<endl;

 cout<<" is the magic number\n"<< magic;

 }

 else

 {

 cout<<"Wrong "<<endl;

 if (guess > magic)

 cout<<"too high\n";

 else

 cout<<"too low\n";

 }

 return 0;

}

OUTPUT:

Guess the magic number:

1721

Wrong

too low

26

The if-else-if Ladder

 A common programming construct is the if-else-if ladder, sometimes called the if-

else-if staircase because of its appearance.

Its general form is

 if (expression) statement;

 else

 if (expression) statement;

 else

 if (expression) statement;

 ...

 else statement;

 The conditions are evaluated from the top downward. As soon as a true condition is

found, the statement associated with it is executed and the rest of the ladder is bypassed. If

none of the conditions are true, the final else is executed. That is, if all other conditional tests

fail, the last else statement is performed. If the final else is not present, no action takes place

if all other conditions are false.

PROGRAM: IF-ELSE-IF LADDER

#include <iostream>

#include<conio.h>

using namespace std;

int main()

{

 char ch;

 float a, b, result;

 cout<<"Enter any two number: ";

 cin>>a>>b;

 cout<<"\n"<<"Enter the operator(+, -, *, /) : ";

 cin>>ch;

 cout<<"\n";

 if(ch=='+')

 {

 result=a+b;

 }

 else if(ch=='-')

 {

 result=a-b;

 }

 else if(ch=='*')

 {

 result=a*b;

 }

 else if(ch=='/')

 {

 result=a/b;

 }

 else

 {

 cout<<"Wrong Operator..!!.. exiting...press a key..";

27

 getch();

 exit(1);

 }

 cout<<"\n"<<"The calculated result is : "<<result<<"\n";

 getch();

}

OUTPUT:

Enter any two number: 2

3

Enter the operator(+, -, *, /) : +

The calculated result is : 5

PROGRAM 4: IF-ELSE-IF LADDER

#include <iostream>

using namespace std;

int main ()

{

 int magic; /* magic number */

 int guess; /* user's guess */

 magic = rand (); /* generate the magic number */

 cout << "Guess the magic number: " << endl;

 cin >> guess;

 cout<<magic<<endl;

 if (guess == magic)

 {

 cout<<"** Right ** "<<endl;

 cout<<" is the magic number"<< magic<<endl;

 }

 else if (guess > magic)

 cout<<"Wrong, too high"<<endl;

 else

 cout<<"Wrong, too low"<<endl;

 return 0;

}

OUTPUT:

Guess the magic number:

67

1804289383

Wrong, too low

SWITCH

 C++ has a built-in multiple-branch selection statement, called switch, which

successively tests the value of an expression against a list of integer or character constants.

When a match is found, the statements associated with that constant are executed.

The general form of the switch statement is

 switch (expression)

28

 {

 case constant1:

 statement sequence

 break;

 case constant2:

 statement sequence

 break;

 case constant3:

 statement sequence

 break;

 ...

 default

 statement sequence

 }

 The expression must evaluate to a character or integer value. Floating-point

expressions, for example, are not allowed. The value of expression is tested, in order, against

the values of the constants specified in the case statements. When a match is found, the

statement sequence associated with that case is executed until the break statement or the end

of the switch statement is reached. The default statement is executed if no matches are

found. The default is optional and, if it is not present, no action takes place if all matches fail.

 Standard C++ recommends that at least 16,384 case statements be supported! Which

is at least 257 case statements in C language. In practice, you will want to limit the number of

case statements to a smaller amount for efficiency.

There are three important things to know about the switch statement:

 The switch differs from the if in that switch can only test for equality, whereas if can

evaluate any type of relational or logical expression.

 No two case constants in the same switch can have identical values. Of course, a switch

statement enclosed by an outer switch may have case constants that are the same.

 If character constants are used in the switch statement, they are automatically converted

to integers.

 The switch statement is often used to process keyboard commands, such as

menu selection.

PROGRAM: SWITCH

#include <iostream>

#include<conio>

using namespace std;

int main()

{

 int dow;

 cout<<"Enter number of week's day (1-7): ";

 cin>>dow;

 switch(dow)

 {

 case 1 : cout<<"\nSunday";

 break;

 case 2 : cout<<"\nMonday";

29

 break;

 case 3 : cout<<"\nTuesday";

 break;

 case 4 : cout<<"\nWednesday";

 break;

 case 5 : cout<<"\nThursday";

 break;

 case 6 : cout<<"\nFriday";

 break;

 case 7 : cout<<"\nSaturday";

 break;

 default : cout<<"\nWrong number of day";

 break;

 }

 getch();

}

OUTPUT:

Enter number of week's day (1-

7): 4

Wednesday

NESTED SWITCH STATEMENTS

 You can have a switch as part of the statement sequence of an outer switch. Even if

the case constants of the inner and outer switch contain common values, no conflicts arise.

For example, the following code fragment is perfectly acceptable:

 switch(x)

 {

 case 1:

 switch(y)

 {

 case 0: printf("Divide by zero error.\n");

 break;

 case 1: process(x,y);

 }

 break;

 case 2:

.

.COMPARISON OF IF AND SWITCH

 The switch differs from the if in that switch can only test for equality, whereas if can

evaluate any type of relational or logical expressions.

B) ITERATION STATEMENTS

 In C++, and all other modern programming languages, iteration statements (also

called loops) allow a set of instructions to be executed repeatedly until a certain condition is

reached. This condition may be predefined (as in the for loop), or open-ended (as in the while

and do-while loops).

30

1. The for Loop

 The general design of the for loop is reflected in some form or another in all

procedural programming languages. However, in C++, it provides unexpected flexibility and

power.

General form:

 for(initialization; condition; increment)

 {

 statement;

 }

 The initialization is an assignment statement that is used to set the loop control

variable.

 The condition is a relational expression that determines when the loop exits.

 The increment defines how the loop control variable changes each time the loop is

repeated.

 You must separate these three major sections by semicolons.

 The for loop continues to execute as long as the condition is true. Once the condition

becomes false, program execution resumes on the statement following the for.

PROGRAM: FOR LOOP

#include <iostream>

using namespace std;

int main ()

{

 int x;

 for (x = 1; x <= 10; x++)

 {

 cout << x<<endl;

 }

 return 0;

}

OUTPUT:

1

2

3

4

5

6

7

8

9

10

 In for loops, the conditional test is always performed at the top of the loop. This

means that the code inside the loop may not be executed at all if the condition is false to

begin with.

31

for Loop Variations

 Several variations of the for are allowed that increase its power, flexibility, and

applicability to certain programming situations.

 One of the most common variations uses the comma operator to allow two or more

variables to control the loop.

 For example, the variables x and y control the following loop, and both are initialized

inside the for statement:

 for(x=0, y=0; x+y<10; ++x)

 {

 y = getchar();

 y = y - '0'; /* subtract the ASCII code for 0

 from y */

 .

 .

 .

 }

 Commas separate the two initialization statements. Each time the loop repeats, x is

incremented and y's value is set by keyboard input. Both x and y must be at the correct value

for the loop to terminate. Even though y's value is set by keyboard input, y must be initialized

to 0 so that its value is defined before the first evaluation of the conditional expression.

PROGRAM: MULTIPLE LOOP VARIABLES

#include <iostream>

using namespace std;

int main ()

{

 for (int i = 0, j = 0; i < 3; i++, j++)

 {

 cout << "i: " << i << " j: " << j << endl;

 }

 return 0;

}

OUTPUT:

i: 0 j: 0

i: 1 j: 1

i: 2 j: 2

PROGRAM: PATTERN PRINTING

#include <iostream>

#include<conio.h>

using namespace std;

int main()

{

 int i, j;

 for(i=0; i<5; i++)

 {

 for(j=0; j<=i; j++)

32

 {

 cout<<"* ";

 }

 cout<<"\n";

 }

 getch();

}

OUTPUT:

*

* *

* * *

* * * *

* * * * *

Interesting trait of the for loop

 The conditional expression does not have to involve testing the loop control variable

against some target value. In fact, the condition may be any relational or logical

statement. This means that you can test for several possible terminating conditions.

 For example, you could use the following function to log a user onto a remote system.

The user has three tries to enter the password. The loop terminates when the three tries

are used up or the user enters the correct password.

 void sign_on(void)

 {

 char str[20] = "";

 int x;

 for(x=0; x<3 && strcmp(str, "password"); ++x)

 {

 cout<<"Enter password please:";

 gets(str);

 }

 if(x==3) return;

 /* else log user in ... */

 }

 This function uses strcmp(), the standard library function that compares two strings

and returns 0 if they match.

 Each of the three sections of the for loop may consist of any valid expression. The

expressions need not actually have anything to do with what the sections are generally

used for.

PROGRAM: FOR LOOP VARIATIONS

#include <iostream>

using namespace std;

int sqrnum (int num);

int readnum (void);

int prompt (void);

int

main (void)

{

33

 int t;

 for (prompt (); t = readnum (); prompt ())

 {

 sqrnum (t);

 }

 return 0;

}

int

prompt (void)

{

 cout << "Enter a number: " ;

 return 0;

}

int

readnum (void)

{

 int t;

 cin >> t;

 return t;

}

int

sqrnum (int num)

{

 cout << "SQUARE is " <<num * num<<endl;

 return num * num;

}

OUTPUT:

Enter a number: 17

SQUARE is 289

Enter a number: 21

SQUARE is 441

Enter a number: 0

 Pieces of the loop definition need not be there. In fact, there need not be an expression

present for any of the sections— the expressions are optional.

 For example, this loop will run until the user enters 123:

 for(x=0; x!=123;)

 cout<<x;

 The increment portion of the for definition is blank. This means that each time the

loop repeats, x is tested to see if it equals 123, but no further action takes place. If you

type 123 at the keyboard, however, the loop condition becomes false and the loop

terminates.

 The initialization of the loop control variable can occur outside the for statement. This

most frequently happens when the initial condition of the loop control variable must be

computed by some complex means as in this example:

 gets(s); /* read a string into s */

34

 if(*s) x = strlen(s); /* get the string's length */

 else x = 10;

 for(; x<10;)

 {

 cout << x;

 ++x;

 }

 The initialization section has been left blank and x is initialized before the loop is

entered.

The Infinite Loop

 Although you can use any loop statement to create an infinite loop, for is traditionally

used for this purpose. Since none of the three expressions that form the for loop are required,

you can make an endless loop by leaving the conditional expression empty:

 for(; ;)

 cout<<"This loop will run forever.\n";

 When the conditional expression is absent, it is assumed to be true. You may have an

initialization and increment expression, but C++ programmers more commonly use the

for(;;) construct to signify an infinite loop.

 Actually, the for(;;) construct does not guarantee an infinite loop because a break

statement, encountered anywhere inside the body of a loop, causes immediate termination.

Program control then resumes at the code following the loop, as shown here:

 ch = '\0';

 for(; ;)

 {

 ch = getchar(); /* get a character */

 if(ch=='A') break; /* exit the loop */

 }

 cout<<"you typed an A";

 This loop will run until the user types an A at the keyboard.

for Loops with No Bodies

 A statement may be empty. This means that the body of the for loop (or any other

loop) may also be empty. You can use this fact to improve the efficiency of certain

algorithms and to create time delay loops.

 Removing spaces from an input stream is a common programming task. For example,

a database program may allow a query such as "show all balances less than 400." The

database needs to have each word fed to it separately, without leading spaces. That is, the

database input processor recognizes "show" but not " show". The following loop shows one

way to accomplish this. It advances past leading spaces in the string pointed to by str.

 for(; *str == ' '; str++) ;

 As you can see, this loop has no body—and no need for one either.

 Time delay loops are often used in programs. The following code shows how to create

one by using for:

 for(t=0; t<SOME_VALUE; t++) ;

2. The while Loop

 The second loop available in C/C++ is the while loop.

General form:

 while(condition)

35

 {

 statement;

 }

 where statement is either an empty statement, a single statement, or a block of

statements.

 The condition may be any expression, and true is any nonzero value. The loop iterates

while the condition is true. When the condition becomes false, program control passes to the

line of code immediately following the loop.

 The following example shows a keyboard input routine that simply loops until the

user types A:

 char wait_for_char(void)

 {

 char ch;

 ch = '\0'; /* initialize ch */

 while(ch != 'A') ch = getchar();

 return ch;

 }

 while loops check the test condition at the top of the loop, which means that the body

of the loop will not execute if the condition is false to begin with. This feature may eliminate

the need to perform a separate conditional test before the loop.

PROGRAM : WHILE LOOP

#include <iostream>

#include<conio.h>

using namespace std;

int main()

{

 unsigned long num, fact=1;

 cout<<"Enter a number: ";

 cin>>num;

 while(num)

 {

 fact = fact*num;

 num--;

 }

 cout<<"The factorial of the number is "<<fact;

 getch();

}

OUTPUT:

Enter a number: 34

The factorial of the number is 4926277576697053184

PROGRAM 20: CHECK PALINDROME OR NOT

#include <iostream>

#include<conio.h>

36

using namespace std;

int main()

{

 int num, rem, orig, rev=0;

 cout<<"Enter a number : ";

 cin>>num;

 orig=num;

 while(num!=0)

 {

 rem=num%10;

 rev=rev*10 + rem;

 num=num/10;

 }

 if(rev==orig) // check if original number is equal to its reverse

 {

 cout<<"Palindrome";

 }

 else

 {

 cout<<"Not Palindrome";

 }

 getch();

}

 OUTPUT:

Enter a number : 2345

Not Palindrome

Interesting trait of the while loop

 If several separate conditions need to terminate a while loop, a single variable commonly

forms the conditional expression. The value of this variable is set at various points

throughout the loop.

 In this example,

 void func1(void)

 {

 int working;

 working = 1; /* i.e., true */

 while(working)

 {

 working = process1();

 if(working)

 working = process2();

 if(working)

 working = process3();

 }

 }

 Any of the three routines may return false and cause the loop to exit.

 There need not be any statements in the body of the while loop.

For example,

37

 while((ch=getchar()) != 'A') ;

 will simply loop until the user types A. If you feel uncomfortable putting the

assignment inside the while conditional expression, remember that the equal sign is just

an operator that evaluates to the value of the right-hand operand.

3. The do-while Loop

 Unlike for and while loops, which test the loop condition at the top of the loop, the

do-while loop checks its condition at the bottom of the loop. This means that a do-while loop

always executes at least once.

General form:

 do

 {

 statement;

 } while(condition);

 The do-while loop iterates until condition becomes false.

 Perhaps the most common use of the do-while loop is in a menu selection function.

When the user enters a valid response, it is returned as the value of the function. Invalid

responses cause a reprompt.

PROGRAM: DO-WHILE

#include <iostream>

#include<conio.h>

using namespace std;

int main()

{

 int num, l=0;

 cout<<"Enter a number: ";

 cin>>num;

 cout<<"\nIncrementing & Printing the number, 10 times:\n";

 do

 {

 num++;

 cout<<num<<"\n";

 l++;

 }while(l<10);

 getch();

}

OUTPUT:

Enter a number: 04

Incrementing & Printing the number, 10 times:

5

6

7

8

38

9

10

11

12

13

14

PROGRAM: FINDING AREA, PERIMETER AND DIAGONAL OF A RECTANGLE

#include <iostream>

#include<conio.h>

#include<math.h>

using namespace std;

int main()

{

 char ch, ch1;

 float l, b, peri, area, diag;

 cout<<"Rectangle Menu";

 cout<<"\n 1. Area";

 cout<<"\n 2. Perimeter";

 cout<<"\n 3. Diagonal";

 cout<<"\n 4. Exit\n";

 cout<<"\nEnter your choice: ";

 do

 {

 cin>>ch;

 if(ch == '1' || ch == '2' || ch == '3')

 {

 cout<<"Enter length & breadth: ";

 cin>>l>>b;

 }

 switch(ch)

 {

 case '1' : area = l * b ;

 cout<<"Area = "<<area;

 break ;

 case '2' : peri = 2 * (l + b);

 cout<<"Perimeter = "<<peri;

 break;

 case '3' : diag = sqrt((l * l) + (b * b));

 cout<<"Diagonal = "<<diag;

 break;

 case '4' : cout<<"Breaking..Press a key..";

 getch();

 exit(1);

 default : cout<<"Wrong choice !!!!";

 cout<<"\nEnter a valid one";

 break;

 } //end of switch

 cout<<"\nWant to enter more (y/n) ? ";

39

 cin>>ch1;

 if(ch1 == 'y' || ch1 == 'Y')

 cout<<"Again enter choice (1-4): ";

 }while(ch1 == 'y' || ch1 == 'Y') ; //end of DO-WHILE loop

 getch();

}

OUTPUT:

Rectangle Menu

 1. Area

 2. Perimeter

 3. Diagonal

 4. Exit

Enter your choice: 1

Enter length & breadth: 2

3

Area = 6

Want to enter more (y/n) ? n

DECLARING VARIABLES WITHIN SELECTION AND ITERATION

STATEMENTS

 In C++ (but not C89), it is possible to declare a variable within the conditional

expression of an if or switch, within the conditional expression of a while loop, or within the

initialization portion of a for loop. A variable declared in one of these places has its scope

limited to the block of code controlled by that statement. For example, a variable declared

within a for loop will be local to that loop.

Example: declares a variable within the initialization portion of a

 for loop:

 /* i is local to for loop; j is known outside loop. */

 int j;

 for(int i = 0; i<10; i++)

 j = i * i;

 /* i = 10; // *** Error *** -- i not known here! */

Here, i is declared within the initialization portion of the for and is used to control the

loop. Outside the loop, i is unknown.

 C++, then you can also declare a variable within any conditional expression, such as

those used by the if or a while.

Example: ,

 if(int x = 20)

 {

 x = x - y;

 if(x>10) y = 0;

 }

 declares x and assigns it the value 20. Since this is a true value, the target of the if

executes. Variables declared within a conditional statement have their scope limited to the

block of code controlled by that statement. Thus, in this case, x is not known outside the if.

C) JUMP STATEMENTS

40

 C++ has four statements that perform an unconditional branch: return, goto, break,

and continue. Of these, you may use return and goto anywhere in your program. You may

use the break and continue statements in conjunction with any of the loop statements.

1. The return Statement

 The return statement is used to return from a function. It is categorized as a jump

statement because it causes execution to return (jump back) to the point at which the call to

the function was made. A return may or may not have a value associated with it. If return

has a value associated with it, that value becomes the return value of the function.

 In C89, a non-void function does not technically have to return a value. If no return

value is specified, a garbage value is returned. However, in C++ (and in C99), a non-void

function must return a value. That is, in C++, if a function is specified as returning a value,

any return statement within it must have a value associated with it.

General form: return expression;

 The expression is present only if the function is declared as returning a value. In this

case, the value of expression will become the return value of the function.

 You can use as many return statements as you like within a function. However, the

function will stop executing as soon as it encounters the first return. The } that ends a

function also causes the function to return. It is the same as a return without any specified

value. If this occurs within a non-void function, then the return value of the function is

undefined.

 A function declared as void may not contain a return statement that specifies a value.

Since a void function has no return value, it makes sense that no return statement within a

void function can return a value.

2. The goto Statement

 It is used for jumping to a specific location. The goto statement requires a label for

operation. (A label is a valid identifier followed by a colon.) Furthermore, the label must be

in the same function as the goto that uses it—you cannot jump between functions.

General form:
 statement is

 goto label;

 ...

 label:

 where label is any valid label either before or after goto.

Example: you could create a loop from 1 to 100 using the goto and a label, as shown here:

 x = 1;

 loop1:

 x++;

 if(x<100) goto loop1;

PROGRAM: GOTO

#include <iostream>

using namespace std;

int main()

{

 ineligible:

 cout<<"checking eligibility to vote!\n";

41

 cout<<"Enter your age:\n";

 int age;

 cin>>age;

 if (age < 18){

 goto ineligible;

 }

 else

 {

 cout<<"You are eligible to vote!";

 }

}

OUTPUT:

3. The break Statement

The break statement has two uses.

 You can use it to terminate a case in the switch statement.

 You can also use it to force immediate termination of a loop, bypassing the normal loop

conditional test.

 When the break statement is encountered inside a loop, the loop is immediately

terminated and program control resumes at the next statement following the loop.

For example,

#include <iostream>

using namespace std;

int main(void)

{

int t;

for(t=0; t<100; t++) {

cout<< t;

if(t==10) break;

}

return 0;

}

 Programmers often use the break statement in loops in which a special condition can

cause immediate termination.

 A break causes an exit from only the innermost loop.

Example:

 for(t=0; t<100; ++t)

 {

 count = 1;

 for(;;)

 {

 cout<<count;

 count++;

42

 if(count==10) break;

 }

 }

 prints the numbers 1 through 10 on the screen 100 times. Each time execution

encounters break, control is passed back to the outer for loop.

 A break used in a switch statement will affect only that switch. It does not affect any

loop the switch happens to be in.

PROGRAM: BREAK

#include <iostream>

using namespace std;

int main(void)

{

int t;

for(t=0; t<100; t++)

{

printf("%d ", t);

if(t==10) break;

}

return 0;

}

OUTPUT:

4. The continue Statement

 The continue statement works somewhat like the break statement. Instead of forcing

termination, however, continue forces the next iteration of the loop to take place, skipping

any code in between. For the for loop, continue causes the conditional test and increment

portions of the loop to execute. For the while and do-while loops, program control passes to

the conditional tests. For example, the following program counts the number of spaces

contained in the string entered by the user:

PROGRAM: CONTINUE

include <iostream>

using namespace std;

int main(void)

{

char s[80], *str;

int space;

printf("Enter a string: ");

gets(s);

str = s;

for(space=0; *str; str++)

{

if(*str != ' ') continue;

43

space++;

}

printf("%d spaces\n", space);

return 0;

}

OUTPUT:

 Each character is tested to see if it is a space. If it is not, the continue statement forces

the for to iterate again. If the character is a space, space is incremented.

PROGRAM: BREAK AND CONTINUE
#include <iostream>

using namespace std;

int main()

{

 cout<<"The loop with \'break\' produces output as:\n";

 for(int i=1; i<=10; i++)

 {

 if((i%3)==0)

 break;

 else

 cout<<i<<endl;

 }

 cout<<"\nThe loop with \'continue\' produce output as:\n";

 for(int i=1; i<=10; i++)

 {

 if((i%3)==0)

 continue;

 else

 cout<<i<<endl;

 }

}

OUTPUT:

44

ARRAYS

Definition: An array is a collection of variables of the same type that are referred to through

a common name. A specific element in an array is accessed by an index. In C++, all arrays

consist of contiguous memory locations. The lowest address corresponds to the first element

and the highest address to the last element.

Single-Dimension Arrays

 Single-dimension arrays are essentially lists of information of the same type that

are stored in contiguous memory locations in index order.

General form: type var_name[size];

 Like other variables, arrays must be explicitly declared so that the compiler may

allocate space for them in memory. Here, type declares the base type of the array, which is

the type of each element in the array, and size defines how many elements the array will hold.

Example: To declare a 100-element array called balance of type double, use this statement:

 double balance[100];

 An element is accessed by indexing the array name. This is done by placing the index

of the element within square brackets after the name of the array.

Example: balance[3] = 12.23;

 assigns element number 3 in balance the value 12.23.

 In C++, all arrays have 0 as the index of their first element. Therefore, when you write

 char p[10];

you are declaring a character array that has ten elements, p[0] through p[9].

 The amount of storage required to hold an array is directly related to its type and size.

For a single-dimension array, the total size in bytes is computed as shown here:

 total bytes = sizeof(base type) x size of array

 C++ has no bounds checking on arrays. You could overwrite either end of an array

and write into some other variable's data or even into the program's code. As the programmer,

it is your job to provide bounds checking where needed.

PROGRAM 31: SINGLE DIMENSIONAL ARRAY

#include <iostream>

using namespace std;

int main()

{

 int arr[50], n;

 cout<<"How many element you want to store in the array ? ";

 cin>>n;

 cout<<"Enter "<<n<<" element to store in the array : ";

 for(int i=0; i<n; i++)

 {

 cin>>arr[i];

 }

 cout<<"The Elements in the Array is : \n";

 for(int i=0; i<n; i++)

45

 {

 cout<<arr[i]<<" ";

 }

}

OUTPUT:

PROGRAM 32: LARGEST ELEMENTS IN ARRAY
#include <iostream>

using namespace std;

int main()

{

 int small, arr[50], size, i;

 cout<<"Enter Array Size (max 50) : ";

 cin>>size;

 cout<<"Enter array elements : ";

 for(i=0; i<size; i++)

 {

 cin>>arr[i];

 }

 cout<<"Searching for smallest element ...\n\n";

 small=arr[0];

 for(i=0; i<size; i++)

 {

 if(small>arr[i])

 {

 small=arr[i];

 }

 }

 cout<<"Smallest Element = "<<small;

}

OUTPUT:

46

Two-Dimensional Arrays

 C++ supports multidimensional arrays. The simplest form of the multidimensional

array is the two-dimensional array. A two-dimensional array is, essentially, an array of one-

dimensional arrays.

 To declare a two-dimensional integer array d of size 10,20, you would write

 int d[10][20];

 C++ places each dimension in its own set of brackets.

 A two-dimensional array, the following formula yields the number of bytes of

memory needed to hold it:

 bytes = size of 1st index x size of 2nd index x sizeof(base type)

 Therefore, assuming 4-byte integers, an integer array with dimensions 10,5 would

have 10 x 5 x 4 or 200 bytes allocated.

 Two-dimensional arrays are stored in a row-column matrix, where the first index

indicates the row and the second indicates the column. This means that the rightmost index

changes faster than the leftmost when accessing the elements in the array in the order in

which they are actually stored in memory.

PROGRAM 38: TWO DIMENSIONAL ARRAYS

#include <iostream>

using namespace std;

int main()

{

 int arr[10][10], row, col, i, j;

 cout<<"Enter number of row for Array (max 10) : ";

 cin>>row;

 cout<<"Enter number of column for Array (max 10) : ";

 cin>>col;

 cout<<"Now Enter "<<row<<"*"<<col<<" Array Elements : ";

 for(i=0; i<row; i++)

 {

 for(j=0; j<col; j++)

 {

 cin>>arr[i][j];

 }

 }

 cout<<"The Array is :\n";

 for(i=0; i<row; i++)

 {

 for(j=0; j<col; j++)

 {

 cout<<arr[i][j]<<" ";

 }

 cout<<"\n";

 }

}

47

OUTPUT:

PROGRAM 39: ADD TWO MATRICES

#include <iostream>

using namespace std;

int main()

{

 int r, c, a[100][100], b[100][100], sum[100][100], i, j;

 cout << "Enter number of rows (between 1 and 100): ";

 cin >> r;

 cout << "Enter number of columns (between 1 and 100): ";

 cin >> c;

 cout << endl << "Enter elements of 1st matrix: " << endl;

 // Storing elements of first matrix entered by user.

 for(i = 0; i < r; ++i)

 for(j = 0; j < c; ++j)

 {

 cout << "Enter element a" << i + 1 << j + 1 << " : ";

 cin >> a[i][j];

 }

 // Storing elements of second matrix entered by user.

 cout << endl << "Enter elements of 2nd matrix: " << endl;

 for(i = 0; i < r; ++i)

 for(j = 0; j < c; ++j)

 {

 cout << "Enter element b" << i + 1 << j + 1 << " : ";

 cin >> b[i][j];

 }

 // Adding Two matrices

 for(i = 0; i < r; ++i)

 for(j = 0; j < c; ++j)

 sum[i][j] = a[i][j] + b[i][j];

 // Displaying the resultant sum matrix.

 cout << endl << "Sum of two matrix is: " << endl;

 for(i = 0; i < r; ++i)

 for(j = 0; j < c; ++j)

 {

 cout << sum[i][j] << " ";

 if(j == c - 1)

48

 cout << endl;

 }

 return 0;

}

OUTPUT:

Enter number of rows (between 1 and 100): 2

Enter number of columns (between 1 and 100): 2

Enter elements of 1st matrix:

Enter element a11 : 1

Enter element a12 : 2

Enter element a21 : 3

Enter element a22 : 4

Enter elements of 2nd matrix:

Enter element b11 : 4

5

Enter element b12 : Enter element b21 : 7

Enter element b22 : 7

Sum of two matrix is:

5 7

10 11

Multidimensional Arrays

 C++ allows arrays of more than two dimensions. The exact limit, if any, is determined

by your compiler.

General form: type name[Size1][Size2][Size3]. . .[SizeN];

 Arrays of more than three dimensions are not often used because of the amount of

memory they require. For example, a four-dimensional character array with dimensions

10,6,9,4 requires 10 * 6 * 9 * 4 or 2,160 bytes. If the array held 2-byte integers, 4,320 bytes

would be needed. If the array held doubles (assuming 8 bytes per double), 17,280 bytes

would be required.

 The storage required increases exponentially with the number of dimensions. For

example, if a fifth dimension of size 10 was added to the preceding array, then 172,

800 bytes would be required.

 In multidimensional arrays, it takes the computer time to compute each index. This

means that accessing an element in a multidimensional array can be slower than accessing an

element in a single-dimension array.

Array Initialization

 C++ allows the initialization of arrays at the time of their declaration.

General form: type_specifier array_name[size1]. . .[sizeN] = { value_list };

 The value_list is a comma-separated list of values whose type is compatible with

type_specifier. The first value is placed in the first position of the array, the second value in

the second position, and so on. Note that a semicolon follows the }.

Example: A 10-element integer array is initialized with the numbers 1 through 10:

49

 int i[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

 This means that i[0] will have the value 1 and i[9] will have the value 10.

 Character arrays that hold strings allow a shorthand initialization that takes the form:

 char array_name[size] = "string";

Example, this code fragment initializes str to the phrase "I like C++".

 char str[11] = "I like C++";

 This is the same as writing char str[11] = {'I', ' ', 'l', 'i', 'k', 'e',' ', 'C',
 '+', '+', '\0'};

 Multidimensional arrays are initialized the same as single-dimension ones.

Example: The following initializes sqrs with the numbers 1 through 10 and their squares.

 int sqrs[10][2] = {1, 1,

 2, 4,

 3, 9,

 4, 16,

 5, 25,

 6, 36,

 7, 49,

 8, 64,

 9, 81,

 10, 100

 };

 When initializing a multidimensional array, you may add braces around the

initializers for each dimension. This is called subaggregate grouping.

Example: Here is another way to write the preceding declaration.

int sqrs[10][2] = { {1, 1},

 {2, 4},

 {3, 9},

 {4, 16},

 {5, 25},

 {6, 36},

 {7, 49},

 {8, 64},

 {9, 81},

 {10, 100}

 };

 When using subaggregate grouping, if you don't supply enough initializers for a given

group, the remaining members will be set to zero automatically.

Unsized Array Initializations

 Imagine that you are using array initialization to build a table of error messages,

as shown here:

 char e1[12] = "Read error\n";

 char e2[13] = "Write error\n";

 char e3[18] = "Cannot open file\n";

 As you might guess, it is tedious to count the characters in each message manually\ to

determine the correct array dimension. Fortunately, you can let the compiler automatically

calculate the dimensions of the arrays. If, in an array initialization statement, the size of the

array is not specified, the C++ compiler automatically creates an array big enough to hold all

50

the initializers present. This is called an unsized array. Using this approach, the message

table becomes

 char e1[] = "Read error\n";

 char e2[] = "Write error\n";

 char e3[] = "Cannot open file\n";

Given these initializations, this statement

 cout<<”has length \n", e2, sizeof(e2);

will print

 Write error has length 13

POINTERS

Definition: A pointer is a variable that holds a memory address. This address is the location

of another object (typically another variable) in memory. For example, if one variable

contains the address of another variable, the first variable is said to point to the second.

Pointer Variables

 If a variable is going to hold a pointer, it must be declared as such. A pointer

declaration consists of a base type, an *, and the variable name.

General form: type *name;

 where type is the base type of the pointer and may be any valid type. The name of the

pointer variable is specified by name.

The Pointer Operators

 There are two special pointer operators: * and &.

& Operator

 The & is a unary operator that returns the memory address of its operand.

Example: m = &count;

 places into m the memory address of the variable count. This address is the

computer's internal location of the variable. It has nothing to do with the value of count. You

can think of & as returning "the address of." Therefore, the preceding assignment statement

means "m receives the address of count."

 To understand the above assignment better, assume that the variable count uses

memory location 2000 to store its value. Also assume that count has a value of 100. Then,

after the preceding assignment, m will have the value 2000.

* Operator

51

 The second pointer operator, *, is the complement of &. It is a unary operator that

returns the value located at the address that follows.

Example: If m contains the memory address of the variable count,

 q = *m;

 places the value of count into q. Thus, q will have the value 100 because 100 is stored

at location 2000, which is the memory address that was stored in m. You can think of * as "at

address." In this case, the preceding statement means "q receives the value at address m."

 In C++, it is illegal to convert one type of pointer into another without the use of an

explicit type cast.

PROGRAM 43: POINTERS

#include <iostream>

using namespace std;

int main()

{

 int var1 = 3;

 int var2 = 24;

 int var3 = 17;

 cout << &var1 << endl;

 cout << &var2 << endl;

 cout << &var3 << endl;

}

OUTPUT:

0x7ffe74f8b134

0x7ffe74f8b138

0x7ffe74f8b13c

PROGRAM 44: POINTERS

#include <iostream>

using namespace std;

int main()

{

 int *pc, c;

 c = 5;

 cout << "Address of c (&c): " << &c << endl;

 cout << "Value of c (c): " << c << endl << endl;

 pc = &c; // Pointer pc holds the memory address of variable c

 cout << "Address that pointer pc holds (pc): "<< pc << endl;

 cout << "Content of the address pointer pc holds (*pc): " << *pc << endl << endl;

 c = 11; // The content inside memory address &c is changed from 5 to 11.

 cout << "Address pointer pc holds (pc): " << pc << endl;

 cout << "Content of the address pointer pc holds (*pc): " << *pc << endl << endl;

 *pc = 2;

52

 cout << "Address of c (&c): " << &c << endl;

 cout << "Value of c (c): " << c << endl << endl;

 return 0;

}

OUTPUT:

Address of c (&c): 0x7ffe72819c04

Value of c (c): 5

Address that pointer pc holds (pc): 0x7ffe72819c04

Content of the address pointer pc holds (*pc): 5

Address pointer pc holds (pc): 0x7ffe72819c04

Content of the address pointer pc holds (*pc): 11

Address of c (&c): 0x7ffe72819c04

Value of c (c): 2

Pointer Expressions

1. Pointer Assignments

 As with any variable, you may use a pointer on the right-hand side of an assignment

statement to assign its value to another pointer.

PROGRAM 47: POINTER ASSIGNMENTS

#include <iostream>

using namespace std;

int main()

{

 int x;

int *p1, *p2;

p1 = &x;

p2 = p1;

cout<<p2; /* print the address of x, not x's value! */

return 0;

}

OUTPUT:

0x7ffd862f1e5c

2. Pointer Arithmetic

 There are only two arithmetic operations that you may use on pointers: addition and

subtraction. To understand what occurs in pointer arithmetic, let p1 be an integer pointer with

a current value of 2000. Also, assume integers are 2 bytes long.

 After the expression

 p1++;

53

 p1 contains 2002, not 2001. The reason for this is that each time p1 is incremented, it

will point to the next integer. The same is true of decrements. For example, assuming that p1

has the value 2000, the expression

 p1--;

 causes p1 to have the value 1998.

 You are not limited to the increment and decrement operators. For example, you may

add or subtract integers to or from pointers. The expression

 p1 = p1 + 12;

makes p1 point to the twelfth element of p1's type beyond the one it currently points to.

 Besides addition and subtraction of a pointer and an integer, only one other arithmetic

operation is allowed: You may subtract one pointer from another in order to find the number

of objects of their base type that separate the two. All other arithmetic operations are

prohibited. Specifically, you may not multiply or divide pointers; you may not add two

pointers; you may not apply the bitwise operators to them; and you may not add or subtract

type float or double to or from pointers.

PROGRAM 48: POINTER ARITHMETIC: INCREMENTING POINTERS

#include <iostream>

using namespace std;

int main()

{

 int var[5] = {10,20,30,40,50}; //Array Declaration.

 int *ptr; //pointer point to int.

 ptr = var; // let us have array address in pointer.

 for (int i = 0; i < 5; i++) //Loop to show Address and Value:

 {

 cout << "\n Address of var[" << i << "] = " <<ptr<<endl; //show the Address:

 cout << "Value of var[" << i << "] = "<<*ptr<<endl; //show the value:

 ptr++; // point to the next location (incrementation)

 }

 return 0;

 }

OUTPUT:

Address of var[0] = 0x7fff8ea2bc90

Value of var[0] = 10

 Address of var[1] = 0x7fff8ea2bc94

Value of var[1] = 20

 Address of var[2] = 0x7fff8ea2bc98

Value of var[2] = 30

54

 Address of var[3] = 0x7fff8ea2bc9c

Value of var[3] = 40

 Address of var[4] = 0x7fff8ea2bca0

Value of var[4] = 50

PROGRAM 49: POINTER ARITHMETIC: DECREMENTING POINTERS

#include <iostream>

using namespace std;

int main()

{

 int var[5] = {10,20,30,40,50}; //Array Declaration.

 int *ptr; //pointer point to int.

 ptr = &var[4]; //ptr point to the last address of Array:

 for (int i = 5; i > 0; i--) //Loop to show Address and Value:

 {

 cout << "\n Address of var[" << i << "] = " <<ptr<<endl; //show the Address:

 cout << "Value of var[" << i << "] = "<<*ptr<<endl; //show the value:

 ptr--; // point to the Previous location:

 }

 return 0;

 }

OUTPUT:

Address of var[5] = 0x7ffec8e97200

Value of var[5] = 50

 Address of var[4] = 0x7ffec8e971fc

Value of var[4] = 40

 Address of var[3] = 0x7ffec8e971f8

Value of var[3] = 30

 Address of var[2] = 0x7ffec8e971f4

Value of var[2] = 20

 Address of var[1] = 0x7ffec8e971f0

Value of var[1] = 10

3. Pointer Comparisons

 You can compare two pointers in a relational expression. For instance, given two

pointers p and q, the following statement is perfectly valid:

 if(p<q)

 cout<<"p points to lower memory than q\n";

55

 Generally, pointer comparisons are used when two or more pointers point to

a common object, such as an array

PROGRAM 50: POINTER COMPARISION

#include <iostream>

using namespace std;

int main()

{

 int var[5] = {10,20,30,40,50}; //Array Declaration.

 int *ptr; //pointer point to int.

 ptr = var; //ptr point to the first address of Array:

 int i=0; //Variable to use in while loop:

 while(ptr <= &var[4]) //Loop to show Address and Value:

 {

 for(int i=0; i<5; i++)

 {

 cout << "\n Address of var[" << i << "] = "

 <<ptr<<endl; //show the Address:

 cout << "Value of var[" << i << "] = "

 <<*ptr<<endl; //show the value:

 ptr++; // point to the Next location:

 }

 }

 return 0;

 }

OUTPUT:

Address of var[0] = 0x7ffe055b21f0

Value of var[0] = 10

 Address of var[1] = 0x7ffe055b21f4

Value of var[1] = 20

 Address of var[2] = 0x7ffe055b21f8

Value of var[2] = 30

 Address of var[3] = 0x7ffe055b21fc

Value of var[3] = 40

 Address of var[4] = 0x7ffe055b2200

Value of var[4] = 50

Pointers and Arrays

 There is a close relationship between pointers and arrays. Consider this program

56

fragment:

 char str[80], *p1;

 p1 = str;

 Here, p1 has been set to the address of the first array element in str. To access the fifth

element in str, you could write

 str[4]

 or

 *(p1+4)

 C++ provides two methods of accessing array elements: pointer arithmetic and array

indexing. Although the standard array-indexing notation is sometimes easier to understand,

pointer arithmetic can be faster. Since speed is often a consideration in programming, C/C++

programmers commonly use pointers to access array elements.

 These two versions of putstr()—one with array indexing and one with pointers

/* Index s as an array. */

void putstr(char *s)

{

register int t;

for(t=0; s[t]; ++t) putchar(s[t]);

}

/* Access s as a pointer. */

void putstr(char *s)

{

while(*s) putchar(*s++);

}

Arrays of Pointers

 Pointers may be arrayed like any other data type. The declaration for an int pointer

array of size 10 is

 int *x[10];

 To assign the address of an integer variable called var to the third element of the

pointer array, write

 x[2] = &var;

To find the value of var, write

 *x[2]

Initializing Pointers

 After a nonstatic local pointer is declared but before it has been assigned a value,

it contains an unknown value. There is an important convention that most C/C++

programmers follow when working with pointers: A pointer that does not currently point to a

valid memory location is given the value null (which is zero).

All pointers, when they are created, should be initialized to some value, even if it is only

zero. A pointer whose value is zero is called a null pointer.

If the pointer is initialized to zero, you must specifically assign the address to the pointer.

 pCount = &Count; // assign the address to the pointer (NO * is present)

57

It is also possible to assign the address at the time of declaration.

 int *pCount = &Count; //declare and assign an integer pointer

 Another variation on the initialization theme is the following type of string

declaration:

char *p = "hello world";

PROGRAM 51: ARRAY OF POINTERS: LAB PROGRAM

FUNCTIONS

Functions are the building blocks of C and C++ and the place where all program

activity occurs

General Form:

ret-type function-name(parameter list)

{

body of the function

}

The ret-type specifies the type of data that the function returns. A function may return

any type of data except an array. The parameter list is a comma-separated list of variable

names and their associated types that receive the values of the arguments when the

function is called. A function may be without parameters

All function parameters must be declared individually, each including both the type

and name.

General form:

f(type varname1, type varname2, . . . , type varnameN)

For example,

f(int i, int k, int j) /* correct */

f(int i, k, float j) /* incorrect */

PROGRAM 52: FUNCTIONS

#include <iostream>

using namespace std;

int add(int, int);

int main()

{

 int num1, num2, sum;

 cout<<"Enters two numbers to add: ";

 cin >> num1 >> num2;

 // Function call

 sum = add(num1, num2);

 cout << "Sum = " << sum;

 return 0;

}

// Function definition

int add(int a, int b)

{

 int add;

 add = a + b;

58

 // Return statement

 return add;

}

OUTPUT:

Enters two numbers to add: 5

4

Sum = 9

Scope Rules of Functions

The scope rules of a language are the rules that govern whether a piece of code knows

about or has access to another piece of code or data. Each function is a discrete block of code.

A function's code is private to that function and cannot be accessed by any statement in any

other function except through a call to that function because the two functions have a

different scope.

Variables that are defined within a function are called local variables. A local variable

comes into existence when the function is entered and is destroyed upon exit. That is, local

variables cannot hold their value between function calls.

In C++ you cannot define a function within a function.

Function Arguments

 If a function is to use arguments, it must declare variables that accept the values of

the arguments. These variables are called the formal parameters of the function. They behave

like other local variables inside the function and are created upon entry into the function and

destroyed upon exit.

/* Return 1 if c is part of string s; 0 otherwise. */

int is_in(char *s, char c)

{

while(*s)

if(*s==c) return 1;

else s++;

return 0;

 }

Parameter Passing

In a computer language, there are two ways that arguments can be passed to a

subroutine.

a. Call by value

This method copies the value of an argument into the formal parameter of the subroutine.

In this case, changes made to the parameter have no effect on the argument.

By default, C/C++ uses call by value to pass arguments. In general, this means that code

within a function cannot alter the arguments used to call the function.

PROGRAM 53: CALL BY VALUE

#include <iostream>

#include<conio.h>

using namespace std;

void swap(int a, int b)

59

{

 int temp;

 temp = a;

 a = b;

 b = temp;

}

int main()

{

 int a = 100, b = 200;

 swap(a, b); // passing value to function

 cout<<"Value of a"<<a;

 cout<<"Value of b"<<b;

 getch();

 return 0;

}

OUTPUT:

Value of a100Value of b200

b. Call by reference

In this method, the address of an argument is copied into the parameter. Inside the

subroutine, the address is used to access the actual argument used in the call. This means that

changes made to the parameter affect the argument.

Creating a Call by Reference

You can create a call by reference by passing a pointer to an argument, instead of the

argument itself. Since the address of the argument is passed to the function, code within the

function can change the value of the argument outside the function. Pointers are passed to

functions just like any other value.

Example:

void swap(int *x, int *y)

{

int temp;

temp = *x; /* save the value at address x */

*x = *y; /* put y into x */

y = temp; / put x into y */

}

swap() is able to exchange the values of the two variables pointed to by x and y

because their addresses (not their values) are passed. Thus, within the function, the contents

of the variables can be accessed using standard pointer operations, and the contents of the

variables used to call the function are swapped.

PROGRAM 54: CALL BY REFERENCE

#include<iostream>

using namespace std;

#include<conio.h>

void swap (int *a, int *b)

60

{

 int temp;

 temp = *a;

 *a = *b;

 *b = temp;

}

int main ()

{

 int a = 100, b = 200;

 swap (&a, &b); // passing value to function

 cout << "Value of a" << a;

 cout << "Value of b" << b;

 return 0;

}

OUTPUT:
Value of a200Value of b100

C++ allows you to fully automate a call by reference through the use of reference

parameters.

Reference parameters: refer References

Function declaration (Function Prototypes)

In C++ all functions must be declared before they are used. This is normally

accomplished using a function prototype.

General form
type func_name(type parm_name1, type parm_name2,. . .,

type parm_nameN);

Example: void sqr_it(int *i); /* prototype */

The only function that does not require a prototype is main(), since it is the first

function called when your program begins.

In C++, an empty parameter list is simply indicated in the prototype by the absence of

any parameters.

Example: int f(); /* C++ prototype for a function with no parameters */

However, in C this prototype means something different. An empty parameter list

simply says that no parameter information is given.

In C, when a function has no parameters, its prototype uses void inside the parameter

list.

Example: here is f()'s prototype as it would appear in a C program.

float f(void);

This tells the compiler that the function has no parameters, and any call to that

function that has parameters is an error. In C++, the use of void inside an empty parameter

list is still allowed, but is redundant.

In C++, f() and f(void) are equivalent.

61

Default Function Arguments

C++ allows a function to assign a parameter a default value when no argument

corresponding to that parameter is specified in a call to that function. The default value is

specified in a manner syntactically similar to a variable initialization.

Example: This declares myfunc() as taking one double argument with a default value of

0.0:

void myfunc(double d = 0.0)

{

// ...

}

Now, myfunc() can be called one of two ways, as the following examples show:

myfunc(198.234); // pass an explicit value

myfunc(); // let function use default

The first call passes the value 198.234 to d. The second call automatically gives d the

default value zero.

One reason that default arguments are included in C++ is because they provide

another method for the programmer to manage greater complexity. To handle the widest

variety of situations, quite frequently a function contains more parameters than are required

for its most common usage. Thus, when the default arguments apply, you need specify only

the arguments that are meaningful to the exact situation, not all those needed by the most

general case. For example, many of the C++ I/O functions make use of default arguments for

just this reason.

A default argument can also be used as a flag telling the function to reuse a previous

argument. To illustrate this usage, a function called iputs() is developed here that

automatically indents a string by a specified amount.

Program: Default argument

#include <iostream>

using namespace std;

/* Default indent to -1. This value tells the function

to reuse the previous value. */

void iputs(char *str, int indent = -1);

int main()

{

iputs("Hello there", 10);

iputs("This will be indented 10 spaces by default");

iputs("This will be indented 5 spaces", 5);

iputs("This is not indented", 0);

return 0;

}

void iputs(char *str, int indent)

{

static int i = 0; // holds previous indent value

if(indent >= 0)

i = indent;

else // reuse old indent value

indent = i;

for(; indent; indent--) cout << " ";

cout << str << "\n";

}

62

Output:

When you are creating functions that have default arguments, it is important to

remember that the default values must be specified only once, and this must be the first time

the function is declared within the file.

All parameters that take default values must appear to the right of those that do not.

For example, it is incorrect to define iputs() like this:

// wrong!

void iputs(int indent = -1, char *str);

Once you begin to define parameters that take default values, you cannot specify a

non defaulting parameter. That is, a declaration like this is also wrong and will not compile:

int myfunc(float f, char *str, int i=10, int j);

Program: Default arguments

#include <iostream>

using namespace std;

class cube

{

int x, y, z;

public:

cube(int i=0, int j=0, int k=0)

{

x=i;

y=j;

z=k;

}

int volume()

{

return x*y*z;

}

};

int main()

{

cube a(2,3,4), b;

cout << a.volume() << endl;

cout << b.volume();

return 0;

}

Advantages

There are two advantages to including default arguments,

1. First, they prevent you from having to provide an overloaded constructor that takes no

parameters.

63

For example, if the parameters to cube() were not given defaults, the second constructor

shown here would be needed to handle the declaration of b (which specified no

arguments).

cube() {x=0; y=0; z=0}

2. Second, defaulting common initial values is more convenient than specifying them each

time an object is declared.

Inline Functions

There is an important feature in C++, called an inline function that is commonly used

with classes.

In C++, you can create short functions that are not actually called; rather, their code is

expanded in line at the point of each invocation. This process is similar to using a function-

like macro. To cause a function to be expanded in line rather than called, precede its

definition with the

Program: Inline Function

#include <iostream>

using namespace std;

inline int max(int a, int b)

{

return a>b ? a : b;

}

int main()

{

cout << max(10, 20);

cout << " " << max(99, 88);

return 0;

}

Output:

The reason that inline functions are an important addition to C++ is that they allow

you to create very efficient code. Since classes typically require several frequently executed

interface functions (which provide access to private data), the efficiency of these functions is

of critical concern. As you probably know, each time a function is called, a significant

amount of overhead is generated by the calling and return mechanism. Typically, arguments

are pushed onto the stack and various registers are saved when a function is called, and then

restored when the function returns. The trouble is that these instructions take time. However,

when a function is expanded in line, none of those operations occur. Although expanding

function calls in line can produce faster run times, it can also result in larger code size

because of duplicated code. For this reason, it is best to inline only very small functions.

Further, it is also a good idea to inline only those functions that will have significant impact

on the performance of your program.

 Inline is actually just a request, not a command, to the compiler. The compiler can

choose to ignore it.

64

Recursion

In C/C++, a function can call itself. A function is said to be recursive if a statement in

the body of the function calls itself. Recursion is the process of defining something in terms

of itself, and is sometimes called circular definition.

A simple example of a recursive function is factr(),

/* recursive */

int factr(int n) {

int answer;

if(n==1) return(1);

answer = factr(n-1)*n; /* recursive call */

return(answer);

}

/* non-recursive */

int fact(int n) {

int t, answer;

answer = 1;

for(t=1; t<=n; t++)

answer=answer*(t);

return(answer);

}

When a function calls itself, a new set of local variables and parameters are allocated

storage on the stack, and the function code is executed from the top with these new variables.

A recursive call does not make a new copy of the function. Only the values being operated

upon are new. As each recursive call returns, the old local variables and parameters are

removed from the stack and execution resumes at the point of the function call inside the

function.

PROGRAM 59: RECURSION

#include <iostream>

#include<conio.h>

using namespace std;

int main()

{

long int factorial(int);

long int fact,value;

cout<<"Enter any number: ";

cin>>value;

fact=factorial(value);

cout<<"Factorial of a number is: "<<fact<<endl;

return 0;

}

long int factorial(int n)

{

if(n<0)

return(-1); /*Wrong value*/

if(n==0)

return(1); /*Terminating condition*/

65

else

{

return(n*factorial(n-1));

}

}

OUTPUTS:

Enter any number: -1

Factorial of a number is: -1

Enter any number: 0

Factorial of a number is: 1

Enter any number: 17

Factorial of a number is: 355687428096000

Advantage

The main advantage to recursive functions is that you can use them to create clearer

and simpler versions of several algorithms. For example, the Quicksort algorithm is difficult

to implement in an iterative way.

Also, some problems, especially ones related to artificial intelligence, lend themselves

to recursive solutions. Finally, some people seem to think recursively more easily than

iteratively.

Pointers to Functions

A particularly confusing yet powerful feature of C++ is the function pointer. Once a

pointer points to a function, the function can be called through that pointer. Function pointers

also allow functions to be passed as arguments to other functions.

You obtain the address of a function by using the function's name without any

parentheses or arguments.

PROGRAM 60: POINTERS TO FUNCTION

#include <iostream>

#include<conio.h>

#include <string.h>

using namespace std;

void check(char *a, char *b,

int (*cmp)(const char *, const char *));

int main(void)

{

char s1[80], s2[80];

int (*p)(const char *, const char *);

p = strcmp;

cout<<"enter 2 strings";

gets(s1);

gets(s2);

check(s1, s2, p);

return 0;

}

void check(char *a, char *b,

int (*cmp)(const char *, const char *))

66

{

cout<<"Testing for equality.\n";

if(!(*cmp)(a, b)) cout<<"Equal";

else cout<<"Not Equal";

}

OUTPUT:

enter 2 strings hj

hj

Testing for equality.

Equal

STRINGS

C++ supports two types of strings.

a. Null-terminated string

Null-terminated string is a null-terminated character array. (A null is zero.) Thus a null-

terminated string contains the characters that comprise the string followed by a null. This is

the only type of string defined by C, and it is still the most widely used. Sometimes null-

terminated strings are called C-strings.

When declaring a character array that will hold a null-terminated string, you need to

declare it to be one character longer than the largest string that it is to hold. For example, to

declare an array str that can hold a 10-character string, you would write

char str[11];

This makes room for the null at the end of the string.

When you use a quoted string constant in your program, you are also creating a null-

terminated string. A string constant is a list of characters enclosed in double quotes.

For example,

"hello there"

You do not need to add the null to the end of string constants manually—the compiler

does this for you automatically.

Null-terminated strings cannot be manipulated by any of the standard C++ operators.

Nor can they take part in normal C++ expressions. For example, consider this fragment:

char s1[80], s2[80], s3[80];

s1 = "Alpha"; // can't do

s2 = "Beta"; // can't do

s3 = s1 + s2; // error, not allowed

As the comments show, in C++ it is not possible to use the assignment operator to

give a character array a new value (except during initialization), nor is it possible to use the +

operator to concatenate two strings. These

b. C++String Class

C++ also defines a string class, called string, which provides an object-oriented

approach to string handling prevents such errors.

There are three reasons for the inclusion of the standard string class: consistency (a

string now defines a data type), convenience (you may use the standard C++ operators), and

safety (array boundaries will not be overrun).

C/C++ supports a wide range of functions that manipulate null-terminated strings.

The most common are

67

Name Function

strcpy(s1, s2) Copies s2 into s1.

strcat(s1, s2) Concatenates s2 onto the end of s1.

strlen(s1) Returns the length of s1.

strcmp(s1, s2) Returns 0 if s1 and s2 are the same; less than 0 if s1<s2;

greater than 0 if s1>s2.

strchr(s1, ch) Returns a pointer to the first occurrence of ch in s1.

strstr(s1, s2) Returns a pointer to the first occurrence of s2 in s1.

These functions use the standard header file string.h. (C++ programs can also use the

C++-style header <cstring>.)

PROGRAM 61: STRING TO READ A WORD

#include <iostream>

#include<conio.h>

#include <string.h>

using namespace std;

int main()

{

 char str[100];

 cout << "Enter a string: ";

 cin >> str;

 cout << "You entered: " << str << endl;

 cout << "\nEnter another string: ";

 cin >> str;

 cout << "You entered: "<<str<<endl;

 return 0;

}

OUTPUT:

Enter a string: KEERTHI

You entered: KEERTHI

Enter another string: KEERTHI

You entered: KEERTHI

PROGRAM 63: STRING USING STRING DATA TYPE

#include <iostream>

#include<conio.h>

#include <string.h>

using namespace std;

int main()

{

 // Declaring a string object

 string str;

 cout << "Enter a string: ";

 getline(cin, str);

 cout << "You entered: " << str << endl;

68

 return 0;

}

OUTPUT:

Enter a string: GOOD EVENING

You entered: GOOD EVENING

PROGRAM 64: STRING FUNCTIONS

#include<iostream>

using namespace std;

#include<conio.h>

#include <string.h>

int main ()

{

 char s1[80], s2[80];

 cout << "enter 2 strings";

 gets (s1);

 gets (s2);

 cout << "lengths: \n" << strlen (s1) << endl << strlen (s2) << endl;

 if (!strcmp (s1, s2))

 cout << "The strings are equal" << endl;

 strcat (s1, s2);

 cout << s1 << endl;

 strcpy (s1, "This is a test.\n");

 cout << s1;

 if (strchr ("hello", 'e'))

 cout << "e is in hello\n";

 if (strstr ("hi there", "hi"))

 cout << "found hi";

 return 0;

}

OUTPUT:
enter 2 stringshello

hello

lengths:

5

5

The strings are equal

hellohello

This is a test.

e is in hello

found hi

STRUCTURES

A structure is a collection of variables referenced under one name, providing a

convenient means of keeping related information together. A structure declaration forms a

template that may be used to create structure objects (that is, instances of a structure). The

variables that make up the structure are called members. (Structure members are also

commonly referred to as elements or fields.)

69

General form:

struct struct-type-name

{

type member-name;

type member-name;

type member-name;

..

} structure-variables;

where either struct-type-name or structure-variables may be omitted, but not both.

Example:
struct addr

{

char name[30];

char street[40];

char city[20];

char state[3];

unsigned long int zip;

} addr_info, binfo, cinfo;

At this point, no variable has actually been created. Only the form of the data has

been defined. When you define a structure, you are defining a compound variable type, not a

variable. Not until you declare a variable of that type does one actually exist. In C, to declare

a variable (i.e., a physical object) of type addr, write

struct addr addr_info;

This declares a variable of type addr called addr_info. In C++, you may use this

shorter form.

addr addr_info;

In C++, once a structure has been declared, you may declare variables of its type

using only its type name, without preceding it with the keyword struct. The reason for this

difference is that in C, a structure's name does not define a complete type name. In fact,

Standard C refers to a structure's name as a tag. In C, you must precede the tag with the

keyword struct when declaring variables. However, in C++, a structure's name is a complete

type name and may be used by itself to define variables.

When a structure variable (such as addr_info) is declared, the compiler automatically

allocates sufficient memory to accommodate all of its members.

Accessing Structure Members

Individual members of a structure are accessed through the use of the . operator

(usually called the dot operator).

The structure variable name followed by a period and the member name references

that individual member. The general form for accessing a member of a structure is

structure-name.member-name

Therefore, to print the ZIP code on the screen, write

printf("%lu", addr_info.zip);

Structure Assignments

The information contained in one structure may be assigned to another structure of the

same type using a single assignment statement. That is, you do not need to assign the value of

each member separately.

struct {

int a;

70

int b;

} x, y;

x.a = 10;

y = x; /* assign one structure to another */

PROGRAM 66: STRUCTURE ASSIGNMENT

#include <iostream>

using namespace std;

int main()

{

 struct {

int a;

int b;

} x, y;

x.a = 10;

y = x; /* assign one structure to another */

cout<<y.a;

return 0;

}

OUTPUT:

10

Arrays of Structures

To declare an array of structures, you must first define a structure and then declare an

array variable of that type. For example, to declare a 100-element array of structures of

type addr, defined earlier, write

struct addr addr_info[100];

To access a specific structure, index the structure name. For example, to print the

ZIP code of structure 3, write

printf("%lu", addr_info[2].zip);

Passing Structures to Functions

a. Passing Structure Members to Functions

When you pass a member of a structure to a function, you are actually passing the value

of that member to the function. Therefore, you are passing a simple variable

For example,

consider this structure:

struct fred

{

char x;

int y;

float z;

char s[10];

} mike;

Here are examples of each member being passed to a function:

func(mike.x); /* passes character value of x */

71

func2(mike.y); /* passes integer value of y */

func3(mike.z); /* passes float value of z */

func4(mike.s); /* passes address of string s */

func(mike.s[2]); /* passes character value of s[2] */

If you wish to pass the address of an individual structure member, put the & operator

before the structure name. For example, to pass the address of the members of the structure

mike, write

func(&mike.x); /* passes address of character x */

func2(&mike.y); /* passes address of integer y */

func3(&mike.z); /* passes address of float z */

func4(mike.s); /* passes address of string s */

func(&mike.s[2]); /* passes address of character s[2] */

b. Passing Entire Structures to Functions

When a structure is used as an argument to a function, the entire structure is passed using

the standard call-by-value method. Of course, this means that any changes made to the

contents of the structure inside the function to which it is passed do not affect the structure

used as an argument.

/* Define a structure type. */

struct struct_type {

int a, b;

char ch;

} ;

void f1(struct struct_type parm);

int main(void)

{

struct struct_type arg;

arg.a = 1000;

f1(arg);

return 0;

}

void f1(struct struct_type parm)

{

printf("%d", parm.a);

}

As this program illustrates, if you will be declaring parameters that are structures, you

must make the declaration of the structure type global so that all parts of your program can

use it. For example, had struct_type been declared inside main() (for example), then it

would not have been visible to f1().

PROGRAM 67: PASSING A STRUCTURE TO A FUNCTION

#include <iostream>

using namespace std;

struct struct_type

{

int a, b;

char ch;

72

} ;

void f1(struct struct_type parm);

int main(void)

{

struct struct_type arg;

arg.a = 1000;

f1(arg);

return 0;

}

void f1(struct struct_type parm)

{

cout<<parm.a;

}

OUTPUT:

1000

PROGRAM 68: PASSING A STRUCTURE TO A FUNCTION

#include <iostream>

using namespace std;

struct Person

{

 char name[50];

 int age;

 float salary;

};

void displayData(Person); // Function declaration

int main()

{

 Person p;

 cout << "Enter Full name: ";

 cin.get(p.name, 50);

 cout << "Enter age: ";

 cin >> p.age;

 cout << "Enter salary: ";

 cin >> p.salary;

 // Function call with structure variable as an argument

 displayData(p);

 return 0;

}

void displayData(Person p)

{

 cout << "\nDisplaying Information." << endl;

 cout << "Name: " << p.name << endl;

 cout <<"Age: " << p.age << endl;

 cout << "Salary: " << p.salary;

}

73

OUTPUT:

Enter Full name: ABC

Enter age: 23

Enter salary: 25000

Displaying Information.

Name: ABC

Age: 23

Salary: 25000

Structure Pointers

C++ allows pointers to structures just as it allows pointers to any other type of

variable.

Declaring a Structure Pointer

Like other pointers, structure pointers are declared by placing * in front of a structure

variable's name. For example, assuming the previously defined structure addr, the following

declares addr_pointer as a pointer to data of that type:

struct addr *addr_pointer;

Remember, in C++ it is not necessary to precede this declaration with the keyword

struct.

Using Structure Pointers

There are two primary uses for structure pointers: to pass a structure to a function

using call by reference, and to create linked lists and other dynamic data structures that rely

on dynamic allocation.

When a pointer to a structure is passed to a function, only the address of the structure

is pushed on the stack. This makes for very fast function calls. A second advantage, in some

cases, is when a function needs to reference the actual structure used as the argument, instead

of a copy. By passing a pointer, the function can modify the contents of the structure used in

the call.

To find the address of a structure, place the & operator before the structure's name.

For example, given the following fragment:

struct bal {

float balance;

char name[80];

} person;

struct bal *p; /* declare a structure pointer */

then

p = &person;

places the address of the structure person into the pointer p.

To access the members of a structure using a pointer to that structure, you must use

the -> operator. For example, this references the balance field:

p->balance

The -> is usually called the arrow operator, and consists of the minus sign followed

by a greater-than sign. The arrow is used in place of the dot operator when you are accessing

a structure member through a pointer to the structure.

PROGRAM 69: POINTER STRUCTURES

#include <iostream>

74

using namespace std;

struct Distance

{

 int feet;

 float inch;

};

int main()

{

 Distance *ptr, d;

 ptr = &d;

 cout << "Enter feet: ";

 cin >> (*ptr).feet;

 cout << "Enter inch: ";

 cin >> (*ptr).inch;

 cout << "Displaying information." << endl;

 cout << "Distance = " << (*ptr).feet << " feet " << (*ptr).inch << " inches";

 return 0;

}

OUTPUT:

Enter feet: 10

Enter inch: 2

Displaying information.

Distance = 10 feet 2 inches

REFERENCES

C++ contains a feature that is related to the pointer called a reference. A reference is

essentially an implicit pointer. There are three ways that a reference can be used: as a

function parameter, as a function return value, or as a stand-alone reference.

Reference Parameters

Probably the most important use for a reference is to allow you to create functions

that automatically use call-by-reference parameter passing. Arguments can be passed to

functions in one of two ways: using call-by-value or call-by-reference. When using call-by-

value, a copy of the argument is passed to the function. Call-by-reference passes the address

of the argument to the function

By default, C++ uses call-by-value, but it provides two ways to achieve call-by-

reference parameter passing. First, you can explicitly pass a pointer to the argument. Second,

you can use a reference parameter. For most circumstances the best way is to use a reference

parameter.

PROGRAM 70: REFERENCES

WITHOUT REFERENCE

// Manually create a call-by-reference using a pointer.

75

#include <iostream>

using namespace std;

void neg(int *i);

int main()

{

int x;

x = 10;

cout << x << " negated is ";

neg(&x);

cout << x << "\n";

return 0;

}

void neg(int *i)

{

*i = -*i;

}

WITH REFERENCE

#include <iostream>

using namespace std;

void neg(int &i); // i now a reference

int main()

{

int x;

x = 10;

cout << x << " negated is ";

neg(x); // no longer need the & operator

cout << x << "\n";

return 0;

}

void neg(int &i)

{

i = -i; // i is now a reference, don't need *

}

OUTPUT:

10 negated is -10

Returning References

A function may return a reference

simple program:

#include <iostream>

using namespace std;

char &replace(int i); // return a reference

char s[80] = "Hello There";

int main()

{

replace(5) = 'X'; // assign X to space after Hello

76

cout << s;

return 0;

}

char &replace(int i)

{

return s[i];

}

One thing you must be careful about when returning references is that the object being

referred to does not go out of scope after the function terminates.

PROGRAM 72: RETURNING REFERENCES

#include <iostream>

using namespace std;

char &replace(int i); // return a reference

char s[80] = "Hello There";

int main()

{

replace(5) = 'X'; // assign X to space after Hello

cout << s;

return 0;

}

char &replace(int i)

{

return s[i];

}

OUTPUT:

HelloXThere

C++'S DYNAMIC ALLOCATION OPERATORS

 C++ provides two dynamic allocation operators: new and delete. C++ also supports

dynamic memory allocation functions, called malloc() and free(). These are included for the

sake of compatibility with C.

 The new operator allocates memory and returns a pointer to the start of it. The delete

operator frees memory previously allocated using new.

General forms:
 p_var = new type;

 delete p_var;

 Here, p_var is a pointer variable that receives a pointer to memory that is large

enough to hold an item of type type.

 Since the heap is finite, it can become exhausted. If there is insufficient available

memory to fill an allocation request, then new will fail and a bad_alloc exception will be

generated. This exception is defined in the header <new>. Your program should handle this

exception and take appropriate action if a failure occurs

 The delete operator must be used only with a valid pointer previously allocated by

using new. Using any other type of pointer with delete is undefined and will almost certainly

cause serious problems, such as a system crash.

 Although new and delete perform functions similar to malloc() and free(), they have

several advantages.

77

1. First, new automatically allocates enough memory to hold an object of the specified

type. You do not need to use the sizeof operator. Because the size is computed

automatically, it eliminates any possibility for error in this regard.

2. Second, new automatically returns a pointer of the specified type. You don't need to use

an explicit type cast as you do when allocating memory by using malloc(). Finally, both

new and delete can be overloaded, allowing you to create customized allocation systems.

Initializing Allocated Memory

 You can initialize allocated memory to some known value by putting an initialize

after the type name in the new statement. Here is the general form of new when an

initialization is included:

General Form: p_var = new var_type (initializer);

PROGRAM 73: DYNAMIC MEMORY ALLOCATION AND DEALLOCATION TO

HOLD AN INTEGER

#include <iostream>

using namespace std;

int main()

{

int *p;

try {

 p = new int; // allocate space for an int

} catch (bad_alloc xa) {

cout << "Allocation Failure\n";

return 1;

}

*p = 100;

cout << "At " << p << " ";

cout << "is the value " << *p << "\n";

delete p;

return 0;

}

OUTPUT:

At 0x162cc20 is the value 100

PROGRAM 74: DYNAMIC MEMORY ALLOCATION AND DEALLOCATION

WHICH GIVES THE ALLOCATED INTEGER AN INITIAL VALUE

#include <iostream>

using namespace std;

int main()

{

int *p;

try {

p = new int (87); // initialize to 87

} catch (bad_alloc xa) {

cout << "Allocation Failure\n";

78

return 1;

}

cout << "At " << p << " ";

cout << "is the value " << *p << "\n";

delete p;

return 0;

}

OUTPUT:

At 0xc14c20 is the value 87

Allocating Arrays

 You can allocate arrays using new.

General form: p_var = new array_type [size];

 Here, size specifies the number of elements in the array.

 To free an array, use this form of delete:

General form: delete [] p_var;

 Here, the [] informs delete that an array is being released.

PROGRAM: DYNAMIC MEMORY ALLOCATION AND DEALLOCATION OF

ARRAYS

#include <iostream>

using namespace std;

int main()

{

int *p, i;

try {

p = new int [10]; // allocate 10 integer array

} catch (bad_alloc xa) {

cout << "Allocation Failure\n";

return 1;

}

for(i=0; i<10; i++)

p[i] = i;

for(i=0; i<10; i++)

cout << p[i] << " ";

delete [] p; // release the array

return 0;

}

OUTPUT:

0 1 2 3 4 5 6 7 8 9

The Placement Form of new

 There is a special form of new, called the placement form, that can be used to specify

an alternative method of allocating memory. It is primarily useful when overloading the new

operator for special circumstances.

General form: p_var = new (arg-list) type;

79

 Here, arg-list is a comma-separated list of values passed to an overloaded form of

new.

PREPROCESSOR DIRECTIVES

 You can include various instructions to the compiler in the source code of a C/C++

program. These are called preprocessor directives

 C++ preprocessor is virtually identical to the one defined by C. The main difference

between C and C++ in this regard is the degree to which each relies upon the preprocessor. In

C, each preprocessor directive is necessary. In C++, some features have been rendered

redundant by newer and better C++ language elements.

 All preprocessor directives begin with a # sign. In addition, each preprocessing

directive must be on its own line.

For example,

 #include <stdio.h> #include <stdlib.h>

will not work.

The preprocessor contains the following directives:

#define

 The #define directive defines an identifier and a character sequence (i.e., a set of

characters) that will be substituted for the identifier each time it is encountered in the source

file. The identifier is referred to as a macro name and the replacement process as macro

replacement.

General form : #define macro-name char-sequence

 Notice that there is no semicolon in this statement.

Example:

 #define LEFT 1

 #define RIGHT 0

#if , #elif , #else , #endif

 Perhaps the most commonly used conditional compilation directives are the #if, #else,

#elif, and #endif. These directives allow you to conditionally include portions of code based

upon the outcome of a constant expression.

General form of #if :
 #if constant-expression

 statement sequence

 #endif

 If the constant expression following #if is true, the code that is between it and #endif

is compiled. Otherwise, the intervening code is skipped. The #endif directive marks the end

of an #if block.

For example,

/* Simple #if example. */

#include <stdio.h>

#define MAX 100

int main(void)

{

#if MAX>99

cout<<"Compiled for array greater than 99.\n";

#endif

return 0;

80

}

This program displays the message on the screen because MAX is greater than 99.

 The #elif directive means "else if" and establishes an if-else-if chain for multiple

compilation options. #elif is followed by a constant expression. If the expression is true, that

block of code is compiled and no other #elif expressions are tested. Otherwise, the next block

in the series is checked.

General form for #elif :

 #if expression

 statement sequence

 #elif expression 1

 statement sequence

 #elif expression 2

 statement sequence

 #elif expression 3

 statement sequence

 #elif expression 4

.

 .

 .

 #elif expression N

 statement sequence

 #endif

#error

 The #error directive forces the compiler to stop compilation. It is used primarily for

debugging.

General form : #error error-message

 The error-message is not between double quotes. When the #error directive is

encountered, the error message is displayed, possibly along with other information defined by

the compiler.

#ifdef , #ifndef

 Another method of conditional compilation uses the directives #ifdef and #ifndef,

which mean "if defined" and "if not defined," respectively.

General form of #ifdef:

 #ifdef macro-name

 statement sequence

 #endif

 If macro-name has been previously defined in a #define statement, the block of code

will be compiled.

General form of #ifndef:

 #ifndef macro-name

 statement sequence

 #endif

 If macro-name is currently undefined by a #define statement, the block of code is

compiled.

 Both #ifdef and #ifndef may use an #else or #elif statement.

For example,

81

#include <stdio.h>

#define TED 10

int main(void)

{

#ifdef TED

cout<<"Hi Ted\n";

#else

cout<<"Hi anyone\n";

#endif

#ifndef RALPH

cout<<"RALPH not defined\n";

#endif

return 0;

}

 You may nest #ifdefs and #ifndefs to at least eight levels in Standard C. Standard

C++ suggests that at least 256 levels of nesting be supported.

#include

 The #include directive instructs the compiler to read another source file in addition to

the one that contains the #include directive. The name of the additional source file must be

enclosed between double quotes or angle brackets.

For example,

 #include "stdio.h"

 #include <stdio.h>

both instruct the compiler to read and compile the header for the C I/O system library

functions.

 Include files can have #include directives in them. This is referred to as nested

includes. The number of levels of nesting allowed varies between compilers. However,

Standard C stipulates that at least eight nested inclusions will be available. Standard C++

recommends that at least 256 levels of nesting be supported.

#undef

 The #undef directive removes a previously defined definition of the macro name that

follows it. That is, it "undefines" a macro.

General form : #undef macro-name

For example,

#define LEN 100

#define WIDTH 100

char array[LEN][WIDTH];

#undef LEN

#undef WIDTH

/* at this point both LEN and WIDTH are undefined */

 Both LEN and WIDTH are defined until the #undef statements are encountered.

#undef is used principally to allow macro names to be localized to only those sections of

code that need them.

#line

82

 The #line directive changes the contents of _ _LINE_ _ and _ _FILE_ _ , which are

predefined identifiers in the compiler. The _ _LINE_ _ identifier contains the line number of

the currently compiled line of code. The _ _FILE_ _ identifier is a string that contains the

name of the source file being compiled.

General form: #line number "filename"

 where number is any positive integer and becomes the new value of _ _LINE_ _ , and

the optional filename is any valid file identifier, which becomes the new value of _ _FILE_

_. #line is primarily used for debugging and special applications.

 For example, the following code specifies that the line count will begin with 100. The

cout statement displays the number 102 because it is the third line in the program after the

#line 100 statement.

 For example, the following code specifies that the line count will begin with 100. The

cout statement displays the number 102 because it is the third line in the program after the

#line 100 statement.

#include <stdio.h>

#line 100 /* reset the line counter */

int main(void) /* line 100 */

{ /* line 101 */

cout<<__LINE__; /* line 102 */

return 0;

}

#pragma

 #pragma is an implementation-defined directive that allows various instructions to be

given to the compiler. For example, a compiler may have an option that supports program

execution tracing. A trace option would then be specified by a #pragma statement.

PROGRAM: PREPROCESSOR DIRECTIVES (#define)

#include <iostream>

#include<string.h>

using namespace std;

#define PI 3.14159

int main () {

 cout << "Value of PI :" << PI << endl;

 return 0;

}

OUTPUT:

Value of PI :3.14159

UNIT-II NOTES

C++ Classes and Abstraction:

Class definition:

It is a collection of data members & data functions like structure.

Class Structure & Class objects:

The general form of a class declaration is,

class class_name

 {

 private data & functions

 public:

 public data & functions

}object name list;

Ex:

 #define SIZE 100

 //This creates a class stack

 Class stack

 {

 int stck[SIZE];

 int tos;

 public:

 void init();

 void push(int i);

 int pop();

};

- A class may contain private as well as public parts. By default, all

items are private.

- For ex. stck & tos are private.

- These private data members only access the functions that are

data members.

- All other variables, or functions defined after public can be

accessed by all other functions in the program.

- The rest of your program accesses an object through its public

functions.

- The functions init(),push() & pop() are called member functions.

- The variables stck & tos are called member variables(data

member).

- Only member functions have access to the private members of

their class.

Only, init(), push() & pop() may access stck & tos.

- Once you have defined a class, you can create an object of that

type by using the calss name.

stack mystack;

- Mystack is a instance of stack.

- Class is a logical abstraction & while object is real(that ias, an

object exists inside the memory of the computer).

- Inside the class stack, members functions were identiofied

using their prototypes.

- When it comes time to actually code a function that is the

member of a class, you must tell the compiler which class the

function belongs to by qualifying it name with the name of a

class of which it is member.

- For ex., here is one way to code the push() function,

void stack::push(int i)

 {

 if(tos==SIZE)

 {

 cout<<”stack is full\n”;

 return;

}

 stck[tos]=i;

 tos++;

}

- The :: is called the scope resolution operator.

- It tells the compiler that this version of push() belongs to the

stack class.

- Or, this push() is in stacks scope.

- In C++, several different classes can use the same function

same. The compiler knows which function belongs to which

class because of the scope resolution operator.

- When you refer to member of a class from a piece of code that

is not part of the calss, you must always do so in conjunction

with an object of that class to do so,

stack stack1,stack2;

stack1.init();

 the remaining code,

 void stack::init(){

 tos=0;

}

int stack::pop()

 {

 if(tos==0){

 cout<<”stack underflow \n”;

 return 0;

}

tos--;

return stck[tos];

}

int main()

 {

 stack stack1,stack2; // create two stack objects

 stack1.init();

 stack2.init();

 stack1.push(1);

 stack2.push(2);

 stack1.push(3);

 stack2.push(4);

 cout<<stack1.pop()<<” ”;

 cout<<stack1.pop()<<” ”;

 cout<<stack2.pop()<<” ”;

 cout<<stack2.pop()<<” ”;

 return 0;

}

Output:

 3 1 4 2

The this pointer:

i. It is used to retrieve the pointer address.
Like, we use ‘&’ operator in C to retrieve the address. In

C++, we use this pointer to know the current object

address.

ii. The this pointer is used to distinguish data member from

local variables. When both are declared with the same.
- usually, the variables are of two types, static &

non-static variables.

1. Every non-static member of C++, having local

variable called this.

2. the static member never contains this.

- it(this) returns address in hexadecimal format.

 i. #include<iostream>

 using namespace std;

 class test

 {

 int a,b;

 public:

 void show()

 {

 a=10;

 b=10;

 cout<<”object Address is: ”<<this;//returns

//the current object address

 cout<<”a=”<<this->a<<endl;

 cout<<”b=”<<this->b<<endl;

 }

};

int main()

 {

 test t;

 t.show();

 return 0;

}

ii. this pointer is used to distinguish data member &

arguments.

#include<iostrem>

using namespace std;

class test

 {

 int a,b;

 public:

 void show(int a,int b)

 {

 a=a;

 b=b;

}

 void display()

 {

 cout<<a<<endl;

 cout<<b;

}

};

int main()

 {

 test t;

 t.show(10,20);

 t.display();

}

- In every programming, the local variables has the priority.

Here, in show() method both data member & local variables

has same name & data members are not recognized.

- In order to distinguish the data members & local variables we

use this pointer.

- The statement,

a=a;

 b=b;

 can be written as,

 this->a=a; or (*this).a=a;

 this->b=b; or (*this).b=b;

Friend classes:

- It is possible for one class to be a friend of another class.

- When this is the case, the friend class & all of its functions have

access to the private members defined within the other class.

- For ex.

- // using friend class

#include<iostream>

using namespace std;

class TwoValues

 {

 int a;

 int b;

 public:

 TwoValues(int i,int j){

 a=i;

 b=j;

}

friend class Min;

};

class Min

 {

 public:

 int min(TwoValues x);

};

 int Min::min(TwoValues x)

 {

 return x.a<x.b?x.a:x.b;

}

 int main()

 {

 TwoValues ob(10,20);

 Min m;

 cout<<m.min(ob);

 return 0;

}

 Output:

 10

- In this ex., class Min has access to the private variables a & b

declared within the TwoValues class.

- It is critical to understand that when one class is a friend of

another, it only has access names defined within the other

class. It does not inherit the other class.

- Specifically , the members of the first class do not become

members of the friend class.

Static class members:

- Both function & data members of a class can be made static.

Static Data Members:

A static member variable has certain special characteristics,

- It is initialized to zero when the first object of its class is

created.

- Only one copy of that member is created for the entire class &

is shared by all the objects of that class, no matter how many

objects are created.

- It is visible only within the class, but its lifetime is the entire

program.

- Static variables are normally used to maintain values common

to the entire class.

- For ex., a static data member can be occurrences of all the

objects.

#include<iostream>

using namespace std;

class item

 {

 static int count;

 int number;

 public:

 void getdata(int a)

 {

 number=a;

 count++;

}

 void getcount(void)

 {

 cout<<”count”;

 count<<count<<”\n”;

}

};

int item::count;

int main()

 {

 item a,b,c;

 a.getcount(); // display count

 b.getcount();

 c.getcount();

 a.getdata(100); // getting data into object a

 b.getdata(200); //getting data into object b

 c.getdata(300);// getting data into object c

 cout<<”After reading data”<<”\n”;

 a.getcount(); // display count

 b.getcount();

 c.getcount();

 return 0;

}

Output:

count:0

count:0

count:0

After reading data

count:3

count:3

count:3

Static Member Functions:

- A member function that is declared static has the following

properties,

i. A static function can have access to only other static

members(functions, or variables) declared in the same

class.

ii. A static member function can be called using the class

name.

class_name::function_name();

below program illustrates the implementations of these

characteristics.

- The static function showcount() displays the number of objects

created till that moment.

- A count of member of objects created is maintained by the

static variable count.

- The function showcode() displays the code number of each

object.

#include<iostream>

using namespace std;

class test

 {

 int code;

 static int count;

 public:

 void setcode(void)

 {

 code=++count;

}

 void showcode(void)

 {

 cout<<”object number:”<<code<<”\n”;

}

 static void showcount(void)

 {

 cout<<”count:”<<count<<”\n”;

}

};

int test::count;

int main()

 {

 test t1,t2;

 t1.setcode();

 t2.setcode();

 test::showcount();

 test t3;

 t3.setcode();

 test::showcount();

 t1.showcode();

 t2.showcode();

 t3.showcode();

 return 0;

}

Output:

 Count:2

 Count:3

 Object number:1

 Object number:2

 Object number:3

const Member Functions:

- If a member functions does not alter any data in the class,

- Then we may declare it as a const member function as follows.

void mul(int,int) const;

double get_balance() const;

- The qualifier const is appended to the function prototypes(in

both declaration & definition).

- The compiler will generate an error message if such functions

try to alter the data values.

Constructor & Destructor:

Introduction:

- A.input(); // Initializes variables of object A.

- X.getdata(100,299.95);

- These function calls, can not be used to initialize the member

variables at the time of object creation.

- Like built in types, we can also create user-defined datatypes.

- This means that we can initialize a class type variables(objects)

when it is declared.

- As same as, initialization of an ordinary variable.

- When variable goes out of scope, it will be destroyed, but it is

not happened with the objects.

- C++ provides a special function called the constructor which

enables an object to initialize itself when it is created.

Constructor:

- A constructor is a special member function whose task is to

initialize the objects of its class.

- It is name is the same as the class name.

- It is invoked whenever an object of its associated class is

created.

- A constructor is declared & defined as follows,

class integer

 {

 int m;

 int n;

 public:

 integer(void); //constructor declared

};

Integer::integer(void) //constructor defined

 {

 m=0;

 n=0;

}

- intger int1; // not only creates object, initializes its data

//member to m & n zero.

- There is no need to write any statement to invoke the

constructor function(like normal member functions).

- A constructor that accepts no parameter is called the default

constructor.

- The default constructor for class a is A::A();

If no such constructor is defined, the compiler supports the

default constructor.

Characteristics of constructor function:

- They should be declared in the public function.

- They are invoked automatically when the objects are created.

- They do not return types, not even void.

- They can’t be inherited.

- Like C++ functions, they can have default arguments.

- We can not refer to their address.

Parameterized Constructor:

- In previous, we initialized, the data members of all the objects

to zero.

- In practice, we have to initialize the data member of object

with different value when they are created.

- This can be achieved by passing arguments constructor.

- The constructor which takes arguments called parameterized

constructor.

class integer

 {

 int m;

 int n;

 public:

 integer(int x,int y);

};

Intger::integer(int x,int y)

{

m=x;

n=y;

}

- Here,

integer int1; //doesn’t works

- We have to pass arguments, to the constructor. This can be

done in two ways.

(i). By calling constructor explicitly

 integer int1=integer(0,100);

(ii). By calling the constructor implicitly

 integer int1(0,100);

 Ex. This program defines a called point that stores the x & y

coordinates of a point.

#include<iotsream>

class point

 {

 int x;

 int y;

 public:

 point(int a,int b)

 {

 x=a;

 y=b;

}

 void display()

 {

 Cout<<”C”<<x<<”,”<<y<<”)\n”;

}

};

 int main()

 {

 point p1(1,1); //invokes parameterized constructor

 point p2(5,10);

 cout<<”Point p1=”;

 p1.display();

 cout<<”Point p2=”;

 p2.display();

 return 0;

}

Output:

 Point p1=(1,1)

Point p2=(5,10)

Multiple Constructor in a Calss:

class integer

 {

 int m;

 int n;

 public:

 integer() //constructor1

 {

 m=0;

 n=0;

}

 integer(int a,int b)

 {

 m=a;

 n=b;

}

 integer(integer &i)

 {

 m=i.m;

 n=i.n;

}

};

 int main()

 {

 integer I1;

 integer I2(20,40);

 integer I3(I2);

 return 0;

}

Constructor with Default Arguments:

- It is possible to define constructor with default arguments.

- For ex. The constructor complex can be declared as,

complex(float real,float imag=0);

the default value of argument imag is zero.

- complex c(5.0); // real=5.0,imag=0

- complex c(2.0,3.0);

//real=2.0, imag=3.0

- the difference between default constructor & default argument

constructor.

- The default argument constructor can be called with either one

argument or no arguments.

Copy constructor:

- A copy constructor is used to declare & initialize an object from

another object.

Integer I2(I1);

//The above statement define object I2 & initializes it to the

values of I1.

- Another form is,

Integer I2=I1;

- integer(integer &i);

#include<iostream>

using namespace std;

class code

 {

 int id;

 public:

 code()

 {

}

 code(int a)

 {

 id=a;

}

 code(code &x) //Copy constructor

 {

 id=x.id;

}

 void display()

 {

 cout<<id;

}

};

 int main()

 {

 code A(100); //object created & initialized

 code B(A); //copy constructor called

 code C=A; // copy constructor called

 code D; // D is created & not initialized

 cout<<”\n id of A:”;

 A.display();

 cout<<”\n id of B”;

 B.display();

 cout<<”\n id of C”;

 C.display();

 cout<<”\n id of D”;

 D.display();

 return 0;

 }

 Output:

 Id of A:100

 Id of B:100

 Id of C:100

 Id of D:100

Destructor:

- it is used to destroy the objects that have been created by a

constructor.

- Like constructor, the destructor is a member function whose

name is the same as the class name but is preceded by a tilde.

- For ex. The destructor for the class integer can be defined as

shown below,

~integer()

 {

}

- A destructor never takes any argument nor does it return value.

- It will be invoked implicitly by the compiler upon exist from the

program(or block or function etc).

- The ex. Below illustrates that the destructor has been invoked

implicitly by the compiler.

#include<iostream>

using namespace std;

int count=0;

class test

 {

 public:

 test()

 {

 count++;

 cout<<”\n Constructor Msg:object number”;

}

 ~test()

 {

cout<<”\n Destructor Msg:object

number”<<count<<”destroyed”;

count—;

}

};

int main()

 {

 cout<<”Inside the main block.”;

 cout<<”\n\n Creating first object T1..”;

 test T1;

 {

 cout<<”\n \n Inside Block..”;

 cout<<”\n \n Creating two more objects T2 & T3..”;

 test T2,T3;

 cout<<”\n\nLeaving Block1..”;

}

 cout<<”\n \n Back inside the main block”;

 return 0;

}

Output:

Inside the main block

Creating first object T1

Constructor Msg:Object number 1 created

Inside block 1

Creating two more objects T2 and T3

Constructor Msg:Object number 2 created

Constructor Msg:Object number 3 created

Leaving Block1..

Destructor Msg:Object number 3 destroyed

Destructor Msg:Object number 2 destroyed

Back inside the main block

Destructor Msg:object number 1 destroyed

Dynamic creation & destruction of objects:

- C++ supports dynamic memory allocation & de-allocation.

- C++ allocates memory & initializes the member variables.

- A object can be created at run-time; such an object is called a

dynamic object.

- The construction & destruction of the dynamic object is

explicitly done by an programmer.

- The new & delete operator are used to allocate & de-allocate

memory to such objects.

- A dynamic object can be created using the new operator as

follows.

ptr=new classname;

- The new operator returns the address of the object created & it

is stored in the pointer ptr.

- The variable ptr is a pointer object of the same class.

- The member variable of the object can be accessed using the

pointer -> (arrow) operator.

- A dynamic object can be destroyed using delete operator as

follows.

delete ptr;

- The delete operator destroys the object pointed by the pointer

ptr.

- It also invokes the destructor of a class.

- The following program explains the creation & destruction of

dynamic objects.

#include<iostream>

using namespace std;

class data

 {

 int x;

 int y;

 public:

 data()

 {

 cout<<”\n Constructor”;

 x=10;

 y=50;

}

 ~data()

 {

 cout<<”\n Destructor ”;

}

 void display()

 {

 cout<<”\n x=”<<x;

 cout<<”\n y=”<<y;

}

};

 int main()

 {

 data *d; // declaration of object pointer

 d=new data; //dynamic object

 d->display();

 delete d; //deleting the dynamic object

 return 0;

}

Output:

Constructor

x=10

y=50

Destructor

Data Abstraction:

- Data Abstraction is a process of providing only the essential details

to the outside world and hiding the internal details, i.e.,

representing only the essential details in the program.

- Data Abstraction is a programming technique that depends on the

seperation of the interface and implementation details of the

program.

- Let's take a real life example of AC, which can be turned ON or OFF,

change the temperature, change the mode, and other external

components such as fan, swing. But, we don't know the internal

details of the AC, i.e., how it works internally. Thus, we can say that

AC seperates the implementation details from the external

interface.

- C++ provides a great level of abstraction. For example, pow()

function is used to calculate the power of a number without knowing

the algorithm the function follows.

- Data Abstraction is a process of providing only the essential details

to the outside world and hiding the internal details, i.e.,

representing only the essential details in the program.

- Data Abstraction is a programming technique that depends on the

seperation of the interface and implementation details of the

program.

- Let's take a real life example of AC, which can be turned ON or OFF,

change the temperature, change the mode, and other external

components such as fan, swing. But, we don't know the internal

details of the AC, i.e., how it works internally. Thus, we can say that

AC seperates the implementation details from the external

interface.

C++ provides a great level of abstraction. For example, pow() function

is used to calculate the power of a number without knowing the

algorithm the function follows.

Data Abstraction can be achieved in two ways:

o Abstraction using classes

o Abstraction in header files.

Abstraction using classes:

An abstraction can be achieved using classes. A class is used to group all the

data members and member functions into a single unit by using the access

specifiers. A class has the responsibility to determine which data member is to

be visible outside and which is not.

Abstraction in header files:

An another type of abstraction is header file. For example, pow() function

available is used to calculate the power of a number without actually
knowing which algorithm function uses to calculate the power. Thus, we

can say that header files hides all the implementation details from the

user.

Access Specifiers Implement Abstraction:

o Public specifier: When the members are declared as public,

members can be accessed anywhere from the program.

o Private specifier: When the members are declared as private,

members can only be accessed only by the member functions of the

class.

Let's see a simple example of abstraction in header files.

// program to calculate the power of a number.

#include <iostream>

#include<math.h>

using namespace std;

int main()

{

 int n = 4;

 int power = 3;

 int result = pow(n,power); // pow(n,power) is the power function

 cout << "Cube of n is : " <<result<< endl;

 return 0;

}
Output:

Cube of n is : 64

In the above example, pow() function is used to calculate 4 raised to the

power 3. The pow() function is present in the math.h header file in which

all the implementation details of the pow() function is hidden.

Let's see a simple example of data abstraction using classes.

#include <iostream>

using namespace std;

 class Sum

{

private:

 int x, y, z; // private variables

public:

void add()

{

cout<<"Enter two numbers: ";

cin>>x>>y;

z= x+y;

cout<<"Sum of two number is: "<<z<<endl;

}

};

int main()

{

Sum sm;

sm.add();

return 0;

}
Output:

 Enter two numbers:

 3

 6

 Sum of two number is: 9

In the above example, abstraction is achieved using classes. A class 'Sum'

contains the private members x, y and z are only accessible by the

member functions of the class.

Advantages Of Abstraction:

o Implementation details of the class are protected from the

inadvertent user level errors.

o A programmer does not need to write the low level code.

o Data Abstraction avoids the code duplication, i.e., programmer does

not have to undergo the same tasks every time to perform the

similar operation.

o The main aim of the data abstraction is to reuse the code and the

proper partitioning of the code across the classes.

o Internal implementation can be changed without affecting the user

level code.

Data Abstraction & ADT

In this topic, you'll learn about abstract data types (ADTs), how they

are used to support data abstraction, and how to create an ADT in

C++. You'll also be able view working code examples.

- When you start your car, you don't need to know the intricate

workings of the starter motor. All you need to do is turn the key to

initiate the sequence.

- If successful, the engine will turn over. This real-world example

highlights the programming concept of data abstraction, which

allows a programmer to protect/hide the implementation of a

process and only gives the keys to other functions or users.

- You only need to know enough about a given function to run it but

don't need to know (or care) about how the internal code works.

To take this a step further, we can create entire data types.

- An abstract data type (or ADT) is a class that has a defined set of

operations and values.

- In other words, you can create the starter motor as an entire

abstract data type, protecting all of the inner code from the user.

When the user wants to start the car, they can just execute the

start() function.

- In programming, an ADT has the following features:

• An ADT doesn't state how data is organized, and

• It provides only what's needed to execute its operations

- An ADT is a prime example of how you can make full use of data

abstraction and data hiding.

- This means that an abstract data type is a huge component of

object-oriented programming methodologies: enforcing abstraction,

allowing data and encapsulation.

One of the most common ADTs is the stack. Let's take a look at it in

action.

Stack Data Type Example

- In this example, we're creating an object-oriented C++ program

that creates an abstract data type in the form of a stack, in which

items can be pushed onto the top and popped off the top.

- The program simulates your browsing history. Each page you visit is

stored in a stack. As you click 'back' on the browser, you are

removing/viewing the top element of the stack. As you go forward

you are pushing them back onto the stack.

This example also shows a little different method for declaring

functions from a class. Notice how they're declared inside the class but

created outside of it. Stacks are very common, so let's see how they

can work for us.

#include <iostream>

using namespace std;

//limit size of browser stack to 100

#define MAX_SIZE 100

class Stack {

 public:

 int top;

 int size[MAX_SIZE];

 //constructor

 Stack() {

 //no top yet

 top = -1;

 }

 //function declarations

 bool push(int page);

 int pop();

 bool is_empty();

};

//Functions created below

//are we empty?

bool Stack::is_empty() {

 return (top < 0);

}

//pop from stack (back button)

int Stack::pop() {

 if(top < 0) {

 cout << "Nothing here...";

 return 0;

 } else {

 int page = size[top--];

 return page;

 }

}

//push onto stack

bool Stack::push(int page) {

 if(top >= MAX_SIZE) {

 cout << "Can't anymore, Jim";

 return false;

 } else {

 size[++top] = page;

 return true;

 }

}

//Finally, create the main function to create a new instance of the

//stack, which you can see appearing here:

int main() {

 //new stack

 Stack pages;

 pages.push(5);

 pages.push(10);

 pages.push(15);

 pages.push(20);

 cout << " Page " << pages.pop() << " popped from stack " << endl;

 cout << " Page " << pages.pop() << " popped from stack " << endl;

 return 0;

}

Output:

Page 20 popped from stack

Page 15 popped from stack

Describing Objects Using ADTs

_ An abstract data type (ADT) is a set of objects and an associated set

of operations on those objects

_ Common examples of ADTs:

 User-defined types: stacks, queues, trees, lists

- stack

Values: Stack elements

Operations: create, dispose, push, pop, is_empty, is_full, etc.

-queue

Values: Queue elements

Operations: create, dispose, enqueue, dequeue, is_empty, is_full, etc.

-tree search structure

Values: Tree elements.

Operations: insert, delete, find, size, traverse (in-order, post-order,

pre-order,level-order), etc.

Information Hiding:

In above ADT Stack, we can achieve information hiding by declaring

data members top & size[MAX_SIZE] as private.

1

UNIT-III

INHERITANCE

INHERITANCE

DEFINITION: Inheritance is a process in which a new class known as derived class is

created from another class called base class.

DEFINING A CLASS HIERARCHY

 In C++, inheritance is supported by allowing one class to incorporate another class

into its declaration. Inheritance allows a hierarchy of classes to be built, moving from most

general to most specific. The process involves first defining a base class, which defines those

qualities common to all objects to be derived from the base. The base class represents the

most general description. The classes derived from the base are usually referred to as derived

classes. A derived class includes all features of the generic base class and then adds qualities

specific to the derived class.

 Inheritance is one of the cornerstones of OOP because it allows the creation of

hierarchical classifications. Using inheritance, you can create a general class that defines

traits common to a set of related items. This class may then be inherited by other, more

specific classes, each adding only those things that are unique to the inheriting class.

 C++'s support of inheritance is both rich and flexible.

DEFINING THE BASE AND DERIVED CLASSES

Base Class: A class that is inherited is referred to as a base class.

Derived Class: The class that does the inheriting is called the derived class. Further, a

 derived class can be used as a base class for another derived class.

ACCESS TO THE BASE CLASS MEMBERS

 When a class inherits another, the members of the base class become members of the

derived class.

General Form of Class Inheritance:

 class derived-class-name : access base-class-name

 {

 // body of class

 };

 The access status of the base-class members inside the derived class is determined by

access. The base-class access specifier must be public, private, or protected. If no access

specifier is present, the access specifier is private by default if the derived class is a class. If

the derived class is a struct, then public is the default in the absence of an explicit access

specifier.

a. Public base class access specifier

 When the access specifier for a base class is public, all public members of the base

become public members of the derived class, and all protected members of the base become

protected members of the derived class. In all cases, the base's private elements remain

private to the base and are not accessible by members of the derived class.

PROGRAM:

#include <iostream>

2

using namespace std;

class base

{

 int i, j;

public:

 void set (int a, int b)

 {

 i = a;

 j = b;

 }

 void show ()

 {

 cout << i << " " << j << "\n";

 }

};

class derived:public base

{

 int k;

public:

 derived (int x)

 {

 k = x;

 }

 void showk ()

 {

 cout << k << "\n";

 }

};

int main ()

{

 derived ob (3);

 ob.set (1, 2); // access member of base

 ob.show (); // access member of base

 ob.showk (); // uses member of derived class

 return 0;

}

OUTPUT:

1 2

3

b. Private base class access specifier

 When the base class is inherited by using the private access specifier, all public and

protected members of the base class become private members of the derived class. This

means that they are still accessible by members of the derived class but cannot be accessed by

parts of your program that are not members of either the base or derived class.

3

PROGRAM:

#include <iostream>

using namespace std;

// This program won't compile.

class base

{

 int i, j;

public:

 void set (int a, int b)

 {

 i = a;

 j = b;

 }

 void show ()

 {

 cout << i << " " << j << "\n";

 }

};

// Public elements of base are private in derived.

class derived:private base

{

 int k;

public:

 derived (int x)

 {

 k = x;

 }

 void showk ()

 {

 cout << k << "\n";

 }

};

int main ()

{

 derived ob (3);

 ob.set (1, 2); // error, can't access set()

 ob.show (); // error, can't access show()

 return 0;

}

OUTPUT:

main.cpp: In function ‘int main()’:

main.cpp:48:15: error: ‘void base::set(int, int)’ is inaccessible within this context

 ob.set (1, 2); // error, can't access set()

 ^

main.cpp:18:8: note: declared here

 void set (int a, int b)

4

 ^~~

main.cpp:48:15: error: ‘base’ is not an accessible base of ‘derived’

 ob.set (1, 2); // error, can't access set()

 ^

main.cpp:49:12: error: ‘void base::show()’ is inaccessible within this context

 ob.show (); // error, can't access show()

 ^

main.cpp:23:8: note: declared here

 void show ()

 ^~~~

main.cpp:49:12: error: ‘base’ is not an accessible base of ‘derived’

 ob.show (); // error, can't access show()

 ^

c. Protected base class access specifier

 The protected keyword is included in C++ to provide greater flexibility in the

inheritance mechanism. When a member of a class is declared as protected, that member is

not accessible by other, non-member elements of the program.

 Access to a protected member is the same as access to a private member—it can be

accessed only by other members of its class. The sole exception to this is when a protected

member is inherited. In this case, a protected member differs substantially from a private one.

 A private member of a base class is not accessible by other parts of your program,

including any derived class. However, protected members behave differently. If the base

class is inherited as public, then the base class' protected members become protected

members of the derived class and are, therefore, accessible by the derived class. By using

protected, you can create class members that are private to their class but that can still be

inherited and accessed by a derived class.

PROGRAM:

#include <iostream>

using namespace std;

// This program won't compile.

class base

{

protected:

 int i, j; // private to base, but accessible by derived

public:

 void set (int a, int b)

 {

 i = a;

 j = b;

 }

 void show ()

 {

 cout << i << " " << j << "\n";

 }

};

5

class derived:public base

{

 int k;

public:

// derived may access base's i and j

 void setk ()

 {

 k = i * j;

 }

 void showk ()

 {

 cout << k << "\n";

 }

};

int main ()

{

 derived ob;

 ob.set (2, 3); // OK, known to derived

 ob.show (); // OK, known to derived

 ob.setk ();

 ob.showk ();

 return 0;

}

OUTPUT:

2 3

6

Protected Base-Class Inheritance

 It is possible to inherit a base class as protected. When this is done, all public and

protected members of the base class become protected members of the derived class.

PROGRAM:

#include <iostream>

using namespace std;

// This program won't compile.

class base

{

protected:

 int i, j; // private to base, but accessible by derived

public:

 void setij (int a, int b)

 {

 i = a;

 j = b;

 }

 void showij ()

 {

6

 cout << i << " " << j << "\n";

 }

};

// Inherit base as protected.

class derived:protected base

{

 int k;

public:

// derived may access base's i and j and setij().

 void setk ()

 {

 setij (10, 12);

 k = i * j;

 }

// may access showij() here

 void showall ()

 {

 cout << k << " ";

 showij ();

 }

};

int main ()

{

 derived ob;

// ob.setij(2, 3); // illegal, setij() is

// protected member of derived

 ob.setk (); // OK, public member of derived

 ob.showall (); // OK, public member of derived

// ob.showij(); // illegal, showij() is protected

// member of derived

 return 0;

}

OUTPUT:

120 10 12

DIFFERENT FORMS OF INHERITANCE

 The following are the different types of inheritance,

1. Single Inheritance

2. Multilevel Inheritance

3. Multiple Inheritance

4. Hierarchical Inheritance

5. Hybrid Inheritance

6. Multipath Inheritance

1. Single Inheritance

7

 It is a process of creating new class called derived class from existing base class. The

derived class inherits the member functions and variables of the existing base class.

General form:

 class derived-class-name : access base-class-name

 {

 // body of class

 };

PROGRAM: ABOVE 3 PROGRAMS

2. Multilevel Inheritance

 When a derived class is used as a base class for another derived class, any protected

member of the base class that is inherited (as public) by the first derived class may also be

inherited as protected again by a second derived class.

PROGRAM:

#include <iostream>

using namespace std;

class base

{

protected:

 int i, j;

public:

 void set (int a, int b)

 {

 i = a;

 j = b;

 }

 void show ()

 {

 cout << i << " " << j << "\n";

 }

};

// i and j inherited as protected.

class derived1:public base

8

{

 int k;

public:

 void setk ()

 {

 k = i * j;

 } // legal

 void showk ()

 {

 cout << k << "\n";

 }

};

// i and j inherited indirectly through derived1.

class derived2:public derived1

{

 int m;

public:

 void setm ()

 {

 m = i - j;

 } // legal

 void showm ()

 {

 cout << m << "\n";

 }

};

int main ()

{

 derived1 ob1;

 derived2 ob2;

 ob1.set (2, 3);

 ob1.show ();

 ob1.setk ();

 ob1.showk ();

 ob2.set (3, 4);

 ob2.show ();

 ob2.setk ();

 ob2.setm ();

 ob2.showk ();

 ob2.showm ();

 return 0;

}

OUTPUT:

2 3

6

3 4

12

9

-1

 If, however, base were inherited as private, then all members of base would become

private members of derived1, which means that they would not be accessible by derived2.

(However, i and j would still be accessible by derived1.)

PROGRAM:

// This program won't compile.

#include <iostream>

using namespace std;

class base

{

protected:

 int i, j;

public:

 void set (int a, int b)

 {

 i = a;

 j = b;

 }

 void show ()

 {

 cout << i << " " << j << "\n";

 }

};

// Now, all elements of base are private in derived1.

class derived1:private base

{

 int k;

public:

// this is legal because i and j are private to derived1

 void setk ()

 {

 k = i * j;

 } // OK

 void showk ()

 {

 cout << k << "\n";

 }

};

// Access to i, j, set(), and show() not inherited.

class derived2:public derived1

{

 int m;

public:

// illegal because i and j are private to derived1

 void setm ()

10

 {

 m = i - j;

 } // Error

 void showm ()

 {

 cout << m << "\n";

 }

};

int main ()

{

 derived1 ob1;

 derived2 ob2;

 ob1.set (1, 2); // error, can't use set()

 ob1.show (); // error, can't use show()

 ob2.set (3, 4); // error, can't use set()

 ob2.show (); // error, can't use show()

 return 0;

}

OUTPUT:

main.cpp: In member function ‘void derived2::setm()’:
main.cpp:53:9: error: ‘int base::i’ is protected within this context
 m = i - j;
 ^
main.cpp:16:7: note: declared protected here
 int i, j;
 ^
main.cpp:53:13: error: ‘int base::j’ is protected within this context
 m = i - j;
 ^
main.cpp:16:10: note: declared protected here
 int i, j;
 ^
main.cpp: In function ‘int main()’:
main.cpp:65:16: error: ‘void base::set(int, int)’ is inaccessible within this cont
ext
 ob1.set (1, 2); // error, can't use set()
 ^
main.cpp:18:8: note: declared here
 void set (int a, int b)
 ^~~
main.cpp:65:16: error: ‘base’ is not an accessible base of ‘derived1’
 ob1.set (1, 2); // error, can't use set()
 ^
main.cpp:66:13: error: ‘void base::show()’ is inaccessible within this context
 ob1.show (); // error, can't use show()
 ^
main.cpp:23:8: note: declared here
 void show ()
 ^~~~
main.cpp:66:13: error: ‘base’ is not an accessible base of ‘derived1’
 ob1.show (); // error, can't use show()
 ^

11

main.cpp:67:16: error: ‘void base::set(int, int)’ is inaccessible within this cont
ext
 ob2.set (3, 4); // error, can't use set()
 ^
main.cpp:18:8: note: declared here
 void set (int a, int b)
 ^~~
main.cpp:67:16: error: ‘base’ is not an accessible base of ‘derived2’
 ob2.set (3, 4); // error, can't use set()
 ^
main.cpp:68:13: error: ‘void base::show()’ is inaccessible within this context
 ob2.show (); // error, can't use show()
 ^
main.cpp:23:8: note: declared here
 void show ()
 ^~~~
main.cpp:68:13: error: ‘base’ is not an accessible base of ‘derived2’
 ob2.show (); // error, can't use show()

3. Multiple Inheritance

 It is possible for a derived class to inherit two or more base classes. Multiple

inheritance allows us to combine the features of several existing classes as a starting point for

defining new class.

General form:

 class derived-class-name : access base-class-name1, access base-class-name2

 {

 // body of class

 };

PROGRAM:

#include <iostream>

using namespace std;

class base1

{

protected:

 int x;

public:

 void showx ()

 {

 cout << x << "\n";

 }

};

12

class base2

{

protected:

 int y;

public:

 void showy ()

 {

 cout << y << "\n";

 }

};

// Inherit multiple base classes.

class derived:public base1, public base2

{

public:

 void set (int i, int j)

 {

 x = i;

 y = j;

 }

};

int main ()

{

 derived ob;

 ob.set (10, 20); // provided by derived

 ob.showx (); // from base1

 ob.showy (); // from base2

 return 0;

}

OUTPUT:

10

20

4. Hierarchical Inheritance

 In this more than one class are derived from a single base class. This supports

hierarchical design of a program. Many programming problems can be cast into a hierarchy

where certain features of one level are shared by many others below the level.

PROGRAM:

#include<iostream>

13

using namespace std;

class A //single base class

{

public:

 int x, y;

 void getdata ()

 {

 cout << "\nEnter value of x and y:\n";

 cin >> x >> y;

 }

};

class B:public A //B is derived from class base

{

public:

 void product ()

 {

 cout << "\nProduct= " << x * y;

 }

};

class C:public A //C is also derived from class base

{

public:

 void sum ()

 {

 cout << "\nSum= " << x + y;

 }

};

int main ()

{

 B obj1; //object of derived class B

 C obj2; //object of derived class C

 obj1.getdata ();

 obj1.product ();

 obj2.getdata ();

 obj2.sum ();

 return 0;

} //end of program

OUTPUT:

Enter value of x and y:

23 45

Product= 1035

Enter value of x and y:

34 56

Sum= 90

14

5. Hybrid Inheritance

 It involves more than one form of any inheritance i.e. we apply two or more types of

inheritance as one.

PROGRAM:

#include <iostream>

using namespace std;

class A

{

public:

 int x;

};

class B:public A

{

public:

 B () //constructor to initialize x in base class A

 {

 x = 10;

 }

};

class C

{

public:

 int y;

 C () //constructor to initialize y

 {

 y = 4;

 }

};

class D:public B, public C //D is derived from class B and class C

{

public:

 void sum ()

 {

 cout << "Sum= " << x + y;

 }

};

15

int

main ()

{

 D obj1; //object of derived class D

 obj1.sum ();

 return 0;

} //end of program

OUTPUT:

Sum= 14

6. Multipath Inheritance

 It is a derivation of a class from other derived classes, which are derived from the

same base class. This type of inheritance involves other inheritance like multiple, multilevel,

hierarchical etc.

PROGRAM:

#include <iostream>

using namespace std;

class person

{

 public:

 char name[100];

 int code;

 void input()

 {

 cout<<"\nEnter the name of the person : ";

 cin>>name;

 cout<<endl<<"Enter the code of the person : ";

 cin>>code;

 }

 void display()

 {

 cout<<endl<<"Name of the person : "<<name;

 cout<<endl<<"Code of the person : "<<code;

 }

};

16

class account:virtual public person

{

 public:

 float pay;

 void getpay()

 {

 cout<<endl<<"Enter the pay : ";

 cin>>pay;

 }

 void display()

 {

 cout<<endl<<"Pay : "<<pay;

 }

};

class admin:virtual public person

{

 public:

 int experience;

 void getexp()

 {

 cout<<endl<<"Enter the experience : ";

 cin>>experience;

 }

 void display()

 {

 cout<<endl<<"Experience : "<<experience;

 }

};

class master:public account,public admin

{

 public:

 char n[100];

 void gettotal()

 {

 cout<<endl<<"Enter the company name : ";

 cin>>n;

 }

 void display()

 {

 cout<<endl<<"Company name : "<<n;

 }

};

int main ()

{

 master m1;

17

 m1.input();

 m1.getpay();

 m1.getexp();

 m1.gettotal();

 cout<<"Displaying Information";

 m1.person::display();

 m1.account::display();

 m1.admin::display();

 m1.display();

 return 0;

} //end of program

OUTPUT:

Enter the name of the person : asd

Enter the code of the person : 1234

Enter the pay : 20000

Enter the experience : 2

Enter the company name : cmr

Displaying Information

Name of the person : asd

Code of the person : 1234

Pay : 20000

Experience : 2

Company name : cmr

BASE AND DERIVED CLASS CONSTRUCTION, DESTRUCTORS

 There are two important points relative to constructors and destructors when

inheritance is involved.

1. When are base-class and derived-class constructors and destructors called?

2. How can parameters be passed to base-class constructors?

When Constructors and Destructors Are Executed

 It is possible for a base class, a derived class, or both to contain constructors and/or

destructors. It is important to understand the order in which these functions are executed

when an object of a derived class comes into existence and when it goes out of existence.

 When an object of a derived class is created, the base class’ constructor will be called

first, followed by the derived class’ constructor. When a derived object is destroyed, its

destructor is called first, followed by the base class' destructor.

 Constructors are executed in order of derivation. Because a base class has no

knowledge of any derived class, any initialization it needs to perform is separate from and

possibly prerequisite to any initialization performed by the derived class. Therefore, it must

be executed first.

 Destructors be executed in reverse order of derivation. Because the base class

underlies the derived class, the destruction of the base object implies the destruction of the

derived object. Therefore, the derived destructor must be called before the object is fully

destroyed.

PROGRAM:

#include <iostream>

18

using namespace std;

class base

{

public:

 base ()

 {

 cout << "Constructing base\n";

 }

 ~base ()

 {

 cout << "Destructing base\n";

 }

};

class derived1:public base

{

public:

 derived1 ()

 {

 cout << "Constructing derived1\n";

 }

 ~derived1 ()

 {

 cout << "Destructing derived1\n";

 }

};

class derived2:public derived1

{

public:

 derived2 ()

 {

 cout << "Constructing derived2\n";

 }

 ~derived2 ()

 {

 cout << "Destructing derived2\n";

 }

};

int main ()

{

 derived2 ob;

// construct and destruct ob

 return 0;

} //end of program

OUTPUT:

Constructing base

19

Constructing derived1

Constructing derived2

Destructing derived2

Destructing derived1

Destructing base

 The same general rule applies in situations involving multiple base classes.

PROGRAM:

#include <iostream>

using namespace std;

class base1

{

public:

 base1 ()

 {

 cout << "Constructing base1\n";

 }

 ~base1 ()

 {

 cout << "Destructing base1\n";

 }

};

class base2

{

public:

 base2 ()

 {

 cout << "Constructing base2\n";

 }

 ~base2 ()

 {

 cout << "Destructing base2\n";

 }

};

class derived:public base1, public base2

{

public:

 derived ()

 {

 cout << "Constructing derived\n";

 }

 ~derived ()

 {

 cout << "Destructing derived\n";

 }

};

20

int main ()

{

 derived ob;

// construct and destruct ob

 return 0;

} //end of program

OUTPUT:

Constructing base1

Constructing base2

Constructing derived

Destructing derived

Destructing base2

Destructing base1

 Constructors are called in order of derivation, left to right, as specified in derived's

inheritance list. Destructors are called in reverse order, right to left.

PROGRAM:

#include <iostream>

using namespace std;

class base1

{

public:

 base1 ()

 {

 cout << "Constructing base1\n";

 }

 ~base1 ()

 {

 cout << "Destructing base1\n";

 }

};

class base2

{

public:

 base2 ()

 {

 cout << "Constructing base2\n";

 }

 ~base2 ()

 {

 cout << "Destructing base2\n";

 }

};

class derived: public base2, public base1

21

{

public:

 derived ()

 {

 cout << "Constructing derived\n";

 }

 ~derived ()

 {

 cout << "Destructing derived\n";

 }

};

int main ()

{

 derived ob;

// construct and destruct ob

 return 0;

} //end of program

OUTPUT:

Constructing base2

Constructing base1

Constructing derived

Destructing derived

Destructing base1

Destructing base2

Passing Parameters to Base-Class Constructors

 When the derived class' constructor requires one or more parameters, you simply use

the standard parameterized constructor syntax.

 But to pass arguments to a constructor in a base class, we have to use an expanded

form of the derived class's constructor declaration that passes along arguments to one or more

base-class constructors.

General form of expanded derived-class constructor declaration

 derived-constructor(arg-list) : base1(arg-list),

 base2(arg-list),

 // ...

 baseN(arg-list)

 {

 // body of derived constructor

 }

 base1 through baseN are the names of the base classes inherited by the derived class.

A colon separates the derived class' constructor declaration from the base-class

specifications, and that the base-class specifications are separated from each other by

commas, in the case of multiple base classes.

PROGRAM:

#include <iostream>

22

using namespace std;

class base

{

protected:

 int i;

public:

 base (int x)

 {

 i = x;

 cout << "Constructing base\n";

 }

 ~base ()

 {

 cout << "Destructing base\n";

 }

};

class derived:public base

{

 int j;

public:

// derived uses x; y is passed along to base.

 derived (int x, int y):base (y)

 {

 j = x;

 cout << "Constructing derived\n";

 }

 ~derived ()

 {

 cout << "Destructing derived\n";

 }

 void show ()

 {

 cout << i << " " << j << "\n";

 }

};

int main ()

{

 derived ob (3, 4);

 ob.show (); // displays 4 3

 return 0;

}

OUTPUT:

Constructing base

Constructing derived

4 3

Destructing derived

23

Destructing base

 The derived class' constructor must declare both the parameter(s) that it requires as

well as any required by the base class.

PROGRAM:

#include<iostream>

using namespace std;

class base1

{

protected:

 int i;

public:

 base1 (int x)

 {

 i = x;

 cout << "Constructing base1\n";

 }

 ~base1 ()

 {

 cout << "Destructing base1\n";

 }

};

class base2

{

protected:

 int k;

public:

 base2 (int x)

 {

 k = x;

 cout << "Constructing base2\n";

 }

 ~base2 ()

 {

 cout << "Destructing base1\n";

 }

};

class derived:public base1, public base2

{

 int j;

public:

 derived (int x, int y, int z):base1 (y), base2 (z)

 {

 j = x;

 cout << "Constructing derived\n";

24

 }

 ~derived ()

 {

 cout << "Destructing derived\n";

 }

 void show ()

 {

 cout << i << " " << j << " " << k << "\n";

 }

};

int main ()

{

 derived ob (3, 4, 5);

 ob.show (); // displays 4 3 5

 return 0;

}

OUTPUT:

Constructing base1

Constructing base2

Constructing derived

4 3 5

Destructing derived

Destructing base1

Destructing base1

 Arguments to a base-class constructor are passed via arguments to the derived class'

constructor. Therefore, even if a derived class' constructor does not use any arguments, it will

still need to declare one if the base class requires it. In this situation, the arguments passed to

the derived class are simply passed along to the base.

PROGRAM:

#include<iostream>

using namespace std;

class base1

{

protected:

 int i;

public:

 base1 (int x)

 {

 i = x;

 cout << "Constructing base1\n";

 }

 ~base1 ()

 {

 cout << "Destructing base1\n";

 }

25

};

class base2

{

protected:

 int k;

public:

 base2 (int x)

 {

 k = x;

 cout << "Constructing base2\n";

 }

 ~base2 ()

 {

 cout << "Destructing base2\n";

 }

};

class derived:public base1, public base2

{

public:

/* Derived constructor uses no parameter, but still must be declared as taking them to pass

them along to base classes. */

 derived (int x, int y):base1 (x), base2 (y)

 {

 cout << "Constructing derived\n";

 }

 ~derived ()

 {

 cout << "Destructing derived\n";

 }

 void show ()

 {

 cout << i << " " << k << "\n";

 }

};

int main ()

{

 derived ob (3, 4);

 ob.show (); // displays 3 4

 return 0;

}

OUTPUT:

Constructing base1

Constructing base2

Constructing derived

3 4

26

Destructing derived

Destructing base2

Destructing base1

 A derived class' constructor is free to make use of any and all parameters that it is

declared as taking, even if one or more are passed along to a base class. Put differently,

passing an argument along to a base class does not preclude its use by the derived class as

well. For example, this fragment is perfectly valid:

class derived: public base

 {

 int j;

 public:

 // derived uses both x and y and then passes them to base.

 derived(int x, int y): base(x, y)

 { j = x*y; cout << "Constructing derived\n"; }

 One final point to keep in mind when passing arguments to base-class constructors:

The argument can consist of any expression valid at the time. This includes function calls and

variables. This is in keeping with the fact that C++ allows dynamic initialization.

VIRTUAL BASE CLASS

 An element of ambiguity can be introduced into a C++ program when multiple base

classes are inherited.

PROGRAM:

// This program contains an error and will not compile.

#include <iostream>

using namespace std;

class base

{

public:

 int i;

};

// derived1 inherits base.

class derived1:public base

{

public:

 int j;

};

// derived2 inherits base.

class derived2:public base

{

public:

 int k;

};

/* derived3 inherits both derived1 and derived2. This means that there are two copies of base

in derived3! */

27

class derived3:public derived1, public derived2

{

public:

 int sum;

};

int main ()

{

 derived3 ob;

 ob.i = 10; // this is ambiguous, which i???

 ob.j = 20;

 ob.k = 30;

// i ambiguous here, too

 ob.sum = ob.i + ob.j + ob.k;

// also ambiguous, which i?

 cout << ob.i << " ";

 cout << ob.j << " " << ob.k << " ";

 cout << ob.sum;

 return 0;

}

OUTPUT:

main.cpp: In function ‘int main()’:

main.cpp:40:6: error: request for member ‘i’ is ambiguous

 ob.i = 10; // this is ambiguous, which i???

^

main.cpp:14:7: note: candidates are: int base::i

 int i;

 ^

main.cpp:14:7: note: int base::i

main.cpp:44:15: error: request for member ‘i’ is ambiguous

 ob.sum = ob.i + ob.j + ob.k;

 ^

main.cpp:14:7: note: candidates are: int base::i

 int i;

 ^

main.cpp:14:7: note: int base::i

main.cpp:46:14: error: request for member ‘i’ is ambiguous

 cout << ob.i << " ";

 ^

main.cpp:14:7: note: candidates are: int base::i

 int i;

 ^

main.cpp:14:7: note: int base::i

 Both derived1 and derived2 inherit base. However, derived3 inherits both derived1

and derived2. This means that there are two copies of base present in an object of type

derived3. Therefore, in an expression like

ob.i = 10;

28

 which i is being referred to, the one in derived1 or the one in derived2? Because

there are two copies of base present in object ob, there are two ob.is!, the statement is

inherently ambiguous.

Solutions:

 There are two ways to remedy the preceding program.

1. Apply the scope resolution operator to i and manually select one i.

PROGRAM:

// This program uses explicit scope resolution to select i.

#include <iostream>

using namespace std;

class base {

public:

int i;

};

// derived1 inherits base.

class derived1 : public base {

public:

int j;

};

// derived2 inherits base.

class derived2 : public base {

public:

int k;

};

/* derived3 inherits both derived1 and derived2. This means that there are two copies of base

in derived3! */

class derived3 : public derived1, public derived2 {

public:

int sum;

};

int main()

{

derived3 ob;

ob.derived1::i = 10; // scope resolved, use derived1's i

ob.j = 20;

ob.k = 30;

// scope resolved

ob.sum = ob.derived1::i + ob.j + ob.k;

// also resolved here

cout << ob.derived1::i << " ";

cout << ob.j << " " << ob.k << " ";

cout << ob.sum;

return 0;

29

}

OUTPUT:

10 20 30 60

 This solution raises a deeper issue: What if only one copy of base is actually

required? Preventing two copies from being included in derived.

++

2. Virtual Base Class

 When two or more objects are derived from a common base class, you can prevent

multiple copies of the base class from being present in an object derived from those objects

by declaring the base class as virtual when it is inherited. You accomplish this by preceding

the base class' name with the keyword virtual when it is inherited.

PROGRAM:

// This program uses virtual base classes.

#include <iostream>

using namespace std;

class base

{

public:

 int i;

};

// derived1 inherits base as virtual.

class derived1:virtual public base

{

public:

 int j;

};

// derived2 inherits base as virtual.

class derived2:virtual public base

{

public:

 int k;

};

/* derived3 inherits both derived1 and derived2. This time, there is only one copy of base

class. */

class derived3:public derived1, public derived2

{

public:

 int sum;

};

int main ()

{

 derived3 ob;

30

 ob.i = 10; // now unambiguous

 ob.j = 20;

 ob.k = 30;

// unambiguous

 ob.sum = ob.i + ob.j + ob.k;

// unambiguous

 cout << ob.i << " ";

 cout << ob.j << " " << ob.k << " ";

 cout << ob.sum;

 return 0;

}

OUTPUT:

10 20 30 60

Difference between a normal base class and a virtual base class

 The only difference between a normal base class and a virtual one is what occurs

when an object inherits the base more than once. If virtual base classes are used, then only

one base class is present in the object. Otherwise, multiple copies will be found.

31

VIRTUAL FUNCTIONS AND POLYMORPHISM

POLYMORPHISM

 Object-oriented programming languages support polymorphism, which is

characterized by the phrase "one interface, multiple methods." In simple terms,

polymorphism is the attribute that allows one interface to control access to a general class of

actions. The specific action selected is determined by the exact nature of the situation.

 Polymorphism refers to the ability to associate multiple meanings to one function

name.

 Polymorphism is supported by C++ both at compile time and at run time. Compile

time polymorphism is achieved by overloading functions and operators. Run-time

polymorphism is accomplished by using inheritance and virtual functions

STATIC AND DYNAMIC BINDING

Early Binding or Static Binding

 Early binding refers to events that occur at compile time. In essence, early binding

occurs when all information needed to call a function is known at compile time. (Put

differently, early binding means that an object and a function call are bound during

compilation.)

 Examples of early binding include normal function calls (including standard library

functions), overloaded function calls, and overloaded operators.

 The main advantage to early binding is efficiency. Because all information necessary

to call a function is determined at compile time, these types of function calls are very fast.

Late Binding or Dynamic Binding

 The opposite of early binding is late binding. Late binding refers to function calls that

are not resolved until run time. Virtual functions are used to achieve late binding. As you

know, when access is via a base pointer or reference, the virtual function actually called is

determined by the type of object pointed to by the pointer. Because in most cases this cannot

be determined at compile time, the object and the function are not linked until run time.

 The main advantage to late binding is flexibility. Unlike early binding, late binding

allows you to create programs that can respond to events occurring while the program

executes without having to create a large amount of "contingency code." Keep in mind that

because a function call is not resolved until run time, late binding can make for somewhat

slower execution times.

VIRTUAL FUNCTIONS

 A virtual function is a member function that is declared within a base class and

redefined by a derived class. To create a virtual function, precede the function's declaration in

the base class with the keyword virtual. When a class containing a virtual function is

inherited, the derived class redefines the virtual function to fit its own needs. In essence,

virtual functions implement the "one interface, multiple methods" philosophy that underlies

polymorphism. The virtual function within the base class defines the form of the interface to

that function. Each redefinition of the virtual function by a derived class implements its

operation as it relates specifically to the derived class. That is, the redefinition creates a

specific method.

DYNAMIC BINDING THROUGH VIRTUAL FUNCTIONS

 When accessed "normally," virtual functions behave just like any other type of class

member function. Virtual functions behaviour when accessed via a pointer is what which

makes them important and capable of supporting run-time polymorphism

32

 A base-class pointer can be used to point to an object of any class derived from that

base. When a base pointer points to a derived object that contains a virtual function, C++

determines which version of that function to call based upon the type of object pointed to by

the pointer. And this determination is made at run time. Thus, when different objects are

pointed to, different versions of the virtual function are executed. The same effect applies to

base-class references.

PROGRAM:

#include <iostream>

using namespace std;

class base

{

public:

 virtual void vfunc ()

 {

 cout << "This is base's vfunc().\n";

 }

};

class derived1:public base

{

public:

 void vfunc ()

 {

 cout << "This is derived1's vfunc().\n";

 }

};

class derived2:public base

{

public:

 void vfunc ()

 {

 cout << "This is derived2's vfunc().\n";

 }

};

int main ()

{

 base *p, b;

 derived1 d1;

 derived2 d2;

// point to base

 p = &b;

 p->vfunc (); // access base's vfunc()

// point to derived1

 p = &d1;

 p->vfunc (); // access derived1's vfunc()

// point to derived2

33

 p = &d2;

 p->vfunc (); // access derived2's vfunc()

 return 0;

}

OUTPUT:

This is base's vfunc().

This is derived1's vfunc().

This is derived2's vfunc().

Rules for Virtual Functions:

 When virtual functions are created for implementing late binding, observe some basic

rules that satisfy the compiler requirements.

1. The virtual functions must be members of some class.

2. They cannot be static members.

3. They are accessed by using object pointers.

4. A virtual function can be a friend of another class.

5. A virtual function in a base class must be defined, even though it may not be used.

6. The prototypes of the base class version of a virtual function and all the derived class

versions must be identical. C++ considers them as overloaded functions, and the virtual

function mechanism is ignored.

7. We cannot have virtual constructors, but we can have virtual destructors.

8. While a base pointer points to any type of the derived object, the reverse is not true. i.e. we

cannot use a pointer to a derived class to access an object of the base class type.

9. If a virtual function is defined in the base class, it need not be necessarily redefined in the

derived class. In such cases, calls will invoke the base function. When a base pointer

points to a derived class, incrementing or decrementing it will not make it to point to the

next object of the derived class. It is incremented or decremented only relative to its base

type. Therefore we should not use this method to move the pointer to the next object.

VIRTUAL FUNCTION CALL MECHANISM

1. Normal manner

 You can call a virtual function in the "normal" manner by using an object's name and

the dot operator, it is only when access is through a base-class pointer (or reference) that run-

time polymorphism is achieved.

 For example, assuming the preceding example, this is syntactically valid:

 d2.vfunc(); // calls derived2's vfunc()

 Although calling a virtual function in this manner is not wrong, it simply does not

take advantage of the virtual nature of vfunc().

2. Calling a Virtual Function through a Base Class Reference

 Polymorphic nature of a virtual function is also available when called through a base-

class reference. A reference is an implicit pointer. Thus, a base-class reference can be used to

refer to an object of the base class or any object derived from that base. When a virtual

function is called through a base-class reference, the version of the function executed is

determined by the object being referred to at the time of the call.

 The most common situation in which a virtual function is invoked through a base

class reference is when the reference is a function parameter.

34

PROGRAM:

/* Here, a base class reference is used to access a virtual function. */

#include <iostream>

using namespace std;

class base

{

public:

 virtual void vfunc ()

 {

 cout << "This is base's vfunc().\n";

 }

};

class derived1:public base

{

public:

 void vfunc ()

 {

 cout << "This is derived1's vfunc().\n";

 }

};

class derived2:public base

{

public:

 void vfunc ()

 {

 cout << "This is derived2's vfunc().\n";

 }

};

// Use a base class reference parameter.

void f (base & r)

{

 r.vfunc ();

}

int main ()

{

 base b;

 derived1 d1;

 derived2 d2;

 f (b); // pass a base object to f()

 f (d1); // pass a derived1 object to f()

 f (d2); // pass a derived2 object to f()

 return 0;

}

OUTPUT:

This is base's vfunc().

This is derived1's vfunc().

35

This is derived2's vfunc().

PURE VIRTUAL FUNCTIONS

Situations leading to Pure Virtual Functions

 When a virtual function is not redefined by a derived class, the version defined in the

base class will be used. However, in many situations there can be no meaningful definition of

a virtual function within a base class. For example, a base class may not be able to define an

object sufficiently to allow a base-class virtual function to be created. Further, in some

situations you will want to ensure that all derived classes override a virtual function. To

handle these two cases, C++ supports the pure virtual function.

Definition: A pure virtual function is a virtual function that has no definition within the base

class.

General form:

 virtual type func-name(parameter-list) = 0;

 When a virtual function is made pure, any derived class must provide its own

definition. If the derived class fails to override the pure virtual function, a compile-time error

will result.

PROGRAM:

#include <iostream>

using namespace std;

class number

{

protected:

 int val;

public:

 void setval (int i)

 {

 val = i;

 }

// show() is a pure virtual function

 virtual void show () = 0;

};

class hextype:public number

{

public:

 void show ()

 {

 cout << hex << val << "\n";

 }

};

class dectype:public number

{

public:

 void show ()

36

 {

 cout << val << "\n";

 }

};

class octtype:public number

{

public:

 void show ()

 {

 cout << oct << val << "\n";

 }

};

int main ()

{

 dectype d;

 hextype h;

 octtype o;

 d.setval (20);

 d.show (); // displays 20 - decimal

 h.setval (20);

 h.show (); // displays 14 - hexadecimal

 o.setval (20);

 o.show (); // displays 24 - octal

 return 0;

}

OUTPUT:

20

14

24

ABSTRACT CLASSES

 A class that contains at least one pure virtual function is said to be abstract. Because

an abstract class contains one or more functions for which there is no definition (that is, a

pure virtual function), no objects of an abstract class may be created. Instead, an abstract

class constitutes an incomplete type that is used as a foundation for derived classes.

 Although you cannot create objects of an abstract class, you can create pointers and

references to an abstract class. This allows abstract classes to support run-time

polymorphism, which relies upon base-class pointers and references to select the proper

virtual function.

PROGRAM:

// C++ Program to Illustrate Abstract Class

#include <iostream>

using namespace std;

class Abstract

{

37

 int i, j;

public:

 virtual void setData (int i = 0, int j = 0) = 0;

 virtual void printData () = 0;

};

class Derived:public Abstract

{

 int i, j;

public:

 Derived (int ii = 0, int jj = 0):i (ii), j (jj)

 {

 cout << "Creating object " << endl;

 }

 void setData (int ii = 0, int jj = 0)

 {

 i = ii;

 j = jj;

 }

 void printData ()

 {

 cout << "Derived::i = " << i << endl << "Derived::j = " << j << endl;

 }

};

int main ()

{

 // Cannot create an instance of Abstract Class

 // Abstract a;

 Derived d;

 cout << "Current data " << endl;

 d.printData ();

 d.setData (10, 20);

 cout << "New data " << endl;

 d.printData ();

}

OUTPUT:

Creating object

Current data

Derived::i = 0

Derived::j = 0

New data

Derived::i = 10

Derived::j = 20

VIRTUAL DESTRUCTORS

 Inheritance also lends itself to virtual methods, where implementation is provided by

any specific subclasses. However, once an inheritance hierarchy is created, with memory

38

allocations occurring at each stage in the hierarchy, it is necessary to be very careful about

how objects are destroyed so that any memory leaks are avoided. In order to achieve this, we

make use of a virtual destructor.

 In simple terms, a virtual destructor ensures that when derived subclasses go out of

scope or are deleted the order of destruction of each class in a hierarchy is carried out

correctly. If the destruction order of the class objects is incorrect, in can lead to what is

known as a memory leak. This is when memory is allocated by the C++ program but is never

deallocated upon program termination. This is undesirable behaviour as the operating system

has no mechanism to regain the lost memory (because it does not have any references to its

location!). Since memory is a finite resource, if this leak persists over continued program

usage, eventually there will be no available RAM (random access memory) to carry out other

programs.

 For instance, consider a pointer to a base class (such as PayOff) being assigned to a

derived class object address via a reference. If the object that the pointer is pointing to is

deleted, and the destructor is not set to virtual, then the base class destructor will be called

instead of the derived class destructor. This can lead to a memory leak. Consider the

following code:

class Base

{

public:

 Base();

 ~Base();

};

class Derived : public Base {

private:

 double val;

public:

 Derived(const double& _val);

 ~Derived();

}

void do_something() {

 Base* p = new Derived;

 // Derived destructor not called!!

 delete p;

}

 What is happening here? Firstly, we create a base class called Base and a subclass

called Derived. The destructors are NOT set to virtual. In our do_something() function, a

pointer p to a Base class is created and a reference to a new Derived class is assigned to it.

This is legal as Derived is a Base.

However, when we delete p the compiler only knows to call Base's destructor as the pointer is

pointing to a Base class. The destructor associated with Derived is not called and val is not

deallocated.

A memory leak occurs!

 Now consider the amended code below. The virtual keyword has been added to the

destructors:

class Base {

public:

39

 Base();

 virtual ~Base();

};

class Derived : public Base {

private:

 double val;

public:

 Derived(const double& _val);

 virtual ~Derived();

}

void do_something() {

 Base* p = new Derived;

 // Derived destructor is called

 delete p;

}

 What happens now? Once do_something() is called, delete is invoked on the

pointer p. At code execution-time, the correct destructor is looked up in an object known as

a vtable. Hence the destructor associated with Derived will be called prior to a further call to

the destructor associated with Base. This is the behaviour we originally desired. val will be

correctly deallocated.

No memory leak this time!

1

UNIT - IV

C++ I/O

C++ supports two complete I/O systems.

 Inherits from C.

 Object-oriented I/O system defined by C++

NOTE: C++ programs can also use the C++-style header #include<cstdio>

 .

I/O using C functions

It includes,

 Console I/O

 Streams

 Files

Console I/O

 This can be divided into Unformatted and Formatted Console I/O.

Unformatted Console I/O

a. Reading and Writing Characters

 The simplest of the console I/O functions are getchar() and putchar().

getchar() : It reads a character from the keyboard. It waits until a key is pressed and then returns its

value. The key pressed is also automatically echoed to the screen.

Prototype: int getchar(void);

putchar(): It prints or writes a character to the screen at the current cursor position.

Prototype: int putchar(int c);

Program:

#include <iostream>

#include<cstdio>

using namespace std;

int main()

{

char ch;

cout<<"\n Enter a character in lower case: ";

ch = getchar();

cout<<"\nThe entered character is ";

putchar(ch);

cout<<"\nCharacter in UPPER CASE: ";

putchar(ch - 32);

return 0;

}

Output:

Enter a character in lower case: t

The entered character is t

Character in UPPER CASE: T

b. Alternatives to getchar()

 getchar() is not useful in an interactive environment. Two of the most common alternative

functions, getch() and getche()

2

getch() : It waits for a keypress, after which it returns immediately. It does not echo the character to

the screen.

Prototype: int getch(void);

getche() : It is the same as getch(), but the key is echoed.

Prototype: int getche(void);

c. Reading and Writing Strings

gets() : It reads a string of characters entered at the keyboard and places them at the address pointed

to by its argument. You may type characters at the keyboard until you press ENTER. The carriage

return does not become part of the string; instead, a null terminator is placed at the end and gets()

returns.

Prototype: char *gets(char *str);

Problem with gets() : It performs no boundary checks on the array that is receiving input. Thus, it is

possible for the user to enter more characters than the array can hold. One alternative is the fgets()

function.

puts(): It writes its string argument to the screen followed by a newline.

Prototype: int puts(const char *str);

Program:

include <iostream>

#include<cstdio>

using namespace std;

int main()

{

 char str[100];

 cout << "Enter a string: ";

 gets(str);

 cout << "You entered: " << str;

 char str1[] = "Happy New Year";

 char str2[] = "Happy Birthday";

 puts(str1);

 /* Printed on new line since '/n' is added */

 puts(str2);

 return 0;

}

Output:

main.cpp:18:5: warning: ‘char* gets(char*)’ is deprecated [-Wdeprecated-declarations]

/usr/include/stdio.h:638:14: note: declared here

main.cpp:18:13: warning: ‘char* gets(char*)’ is deprecated [-Wdeprecated-declarations]

/usr/include/stdio.h:638:14: note: declared here

main.cpp:(.text+0x31): warning: the `gets' function is dangerous and should not be used.

Enter a string: rt

You entered: rtHappy New Year

Happy Birthday

3

Formatted Console I/O

 The functions printf() and scanf() perform formatted output and input. Both functions can

operate on any of the built-in data types, including characters, strings, and numbers.

printf(): It writes data to the console.

Prototype: int printf(const char *control_string, ...);

 The control_string consists of two types of items. The first type is composed of characters

that will be printed on the screen. The second type contains format specifiers that define the way the

subsequent arguments are displayed. A format specifier begins with a percent sign and is followed by

the format code.

scanf(): Its reads data from the keyboard.

Prototype: int scanf(const char *control_string, ...);

4

 The control_string determines how values are read into the variables pointed to in the

argument list. The control string consists of three classifications of characters:

 Format specifiers

 White-space characters

 Non-white-space characters

Format specifiers

 The input format specifiers are preceded by a % sign and tell scanf() what type of data is to

be read next.

White-space characters

 A white-space character in the control string causes scanf() to skip over one or more leading

white-space characters in the input stream. A white-space character is a space, a tab, vertical tab, form

feed, or a newline.

Non-white-space characters

 A non-white-space character in the control string causes scanf() to read and discard matching

characters in the input stream. For example, "%d,%d" causes scanf() to read an integer, read and

discard a comma, and then read another integer

Program:

#include<iostream>

#include<cstdio>

using namespace std;

int main()

{

int f;

printf(" ff");

scanf("%d",f);

printf(f);

return 0;

}

5

Output: ff f

Streams

 The C file system is designed to work with a wide variety of devices, including terminals,

disk drives, and tape drives. The file system transforms each into a logical device called a stream.

There are two types of streams: text and binary.

 Text Streams

 A text stream is a sequence of characters. Standard C allows (but does not require) a text

stream to be organized into lines terminated by a newline character.

 Certain character translations may occur as required by the host environment. For example, a

newline may be converted to a carriage return/linefeed pair. Therefore, there may not be a one-to-one

relationship between the characters that are written (or read) and those on the external device. Also,

because of possible translations, the number of characters written (or read) may not be the same as

those on the external device.

 Binary Streams
 A binary stream is a sequence of bytes that have a one-to-one correspondence to those in the

external device that is, no character translations occur. Also, the number of bytes written (or read) is

the same as the number on the external device.

The Standard Streams

As it relates to the C file system, when a program starts execution, three streams are opened

automatically. They are stdin (standard input), stdout (standard output), and stderr (standard error).

Using freopen() to Redirect the Standard Streams

You can redirect the standard streams by using the freopen() function. This function associates an

existing stream with a new file. Thus, you can use it to associate a standard stream with a new file.

Prototype: FILE *freopen(const char *filename, const char *mode, FILE *stream);

filename is a pointer to the filename you wish associated with the stream pointed to by stream.

The file is opened using the value of mode, which may have the same values as those used with

fopen(). freopen() returns stream if successful or NULL on failure.

Program

#include <cstdio>

#include <cstdlib>

int main()

{

FILE* fp = fopen("test1.txt","w");

fprintf(fp,"%s","This is written to test1.txt");

if (freopen("test2.txt","w",fp))

fprintf(fp,"%s","This is written to test2.txt");

else

{

printf("freopen failed");

exit(1);

}

fclose(fp);

return 0;

}

6

Output:

Files

In C/C++, a file may be anything from a disk file to a terminal or printer. Each stream that is

associated with a file has a file control structure of type FILE.

 File System Basics

The C file system is composed of several interrelated functions. C++ programs may also

use the C++-style header <cstdio>.

 The File Pointer

The file pointer is the common thread that unites the C I/O system. A file pointer is a pointer

to a structure of type FILE. It points to information that defines various things about the file,

including its name, status, and the current position of the file.

In order to read or write files, your program needs to use file pointers

Prototype : FILE *fp;

File Operations

 fopen() : It opens a stream for use and links a file with that stream. Then it returns the file pointer

associated with that file.

Prototype: FILE *fopen(const char *filename, const char *mode);

where filename is a pointer to a string of characters that make up a valid filename and may

include a path specification.

The legal values for mode are,

 fclose(): It closes a stream that was opened by a call to fopen().

Prototype: int fclose(FILE *fp);

where fp is the file pointer returned by the call to fopen(). The function returns EOF if an

error occurs.

Program:

#include <cstdio>

#include <cstring>

7

#include<iostream>

using namespace std;

int main()

{

int c;

FILE *fp;

fp = fopen("file.txt", "w+r");

char str[20] = "Hello World!";

if (fp)

{

for(int i=0; i<strlen(str); i++)

putc(str[i],fp);

}

fclose(fp);

}

Output:

Hello World!

 putc() and fputc()

These two equivalent functions writes characters to a file that was previously opened for writing

using the fopen() function.

Prototype : int putc(int ch, FILE *fp);

where fp is the file pointer returned by fopen() and ch is the character to be output. The file

pointer tells putc() which file to write to.

If a putc() operation is successful, it returns the character written. Otherwise, it returns EOF.

Program:

#include <cstdio>

#include <cstring>

#include<iostream>

using namespace std;

int main()

{

char str[] = "Testing putc() function";

FILE *fp;

fp = fopen("file.txt","w");

if (fp)

{

for(int i=0; i<strlen(str); i++)

{

putc(str[i],fp);

}

for(int i=0; i<strlen(str); i++)

{

fputc(str[i],fp);

}

}

else

perror("File opening failed");

8

fclose(fp);

return 0;

}

Output:

Testing putc() functionTesting putc() function

 getc() and fgetc()

These two equivalent functions reads characters from a file opened in read mode by fopen().

Prototype : int getc(FILE *fp);

where fp is a file pointer of type FILE returned by fopen(). The getc() function returns an

EOF when the end of the file has been reached. getc() also returns EOF if an error occurs.

Program:

#include <cstdio>

#include <cstring>

#include<iostream>

using namespace std;

int main()

{

int c;

FILE *fp;

fp = fopen("file.txt","r");

if (fp)

{

while(feof(fp) == 0)

{

c = getc(fp);

putchar(c);

}

while(feof(fp) == 0)

{

c = fgetc(fp);

putchar(c);

}

}

else

perror("File opening failed");

fclose(fp);

return 0;

}

Output:

Testing putc() functionTesting putc() function

 feof(): It determines when the end of the file has been encountered.

Prototype: int feof(FILE *fp);

feof() returns true if the end of the file has been reached; otherwise, it returns 0.

9

 fputs() and fgets()

These functions work just like putc() and getc(), but instead of reading or writing a single

character, they read or write strings.

Prototypes:
int fputs(const char *str, FILE *fp);

char *fgets(char *str, int length, FILE *fp);

The fputs() function writes the string pointed to by str to the specified stream. It returns EOF

if an error occurs.

The fgets() function reads a string from the specified stream until either a newline character

is read or length −1 characters have been read.

Program:

#include <cstdio>

#include <cstring>

#include<iostream>

using namespace std;

int main()

{

int count = 10;

char str[10];

FILE *fp;

fp = fopen("file.txt","w+");

fputs("An example file\n", fp);

fputs("Filename is file.txt\n", fp);

rewind(fp);

while(feof(fp) == 0)

{

 fgets(str,count,fp);

 cout << str << endl;

 }

fclose(fp);

return 0;

}

Output:

An exampl

e file

Filename

is file.t

xt

xt

 rewind()

The rewind() function resets the file position indicator to the beginning of the file specified as its

argument. That is, it "rewinds" the file.

Prototype: void rewind(FILE *fp);

10

where fp is a valid file pointer.

Program:

#include <cstdio>

#include <cstring>

#include<iostream>

using namespace std;

int main()

{

int c;

FILE *fp;

fp = fopen("file.txt", "r+w");

if (fp)

{

while ((c = getc(fp)) != EOF)

putchar(c);

rewind(fp);

putchar('\n');

while ((c = getc(fp)) != EOF)

putchar(c);

}

fclose(fp);

return 0;

}

Output:

welcome

welcome

 ferror()

The ferror() function determines whether a file operation has produced an error.

Prototype: int ferror(FILE *fp);

where fp is a valid file pointer. It returns true if an error has occurred during the last file

operation; otherwise, it returns false.

Program:

#include <cstdio>

#include <cstring>

#include<iostream>

using namespace std;

int main()

{

int ch;

FILE* fp;

fp = fopen("file.txt","w");

if(fp)

{

ch = getc(fp);

if (ferror(fp))

cout << "Can't read from file";

}

11

fclose (fp);

return 0;

}

Output:

Can't read from file

 remove()
The remove() function erases the specified file.

Prototype: int remove(const char *filename);

It returns zero if successful; otherwise, it returns a nonzero value.

Program:

#include <cstdio>

#include <cstring>

#include<iostream>

using namespace std;

int main()

{

char filename[] = "file.txt";

/*Deletes the file if exists */

if (remove(filename) != 0)

perror("File deletion failed");

else

cout << "File deleted successfully";

return 0;

}

Output:

File deleted successfully

 fflush()
If you wish to flush the contents of an output stream, use the fflush() function.

Prototype: int fflush(FILE *fp);

Program:

#include <cstdio>

#include <cstring>

#include<iostream>

using namespace std;

int main()

{

int x;

char buffer[1024];

setvbuf(stdout, buffer, _IOFBF, 1024);

printf("Enter an integer - ");

fflush(stdout);

scanf("%d",&x);

printf("You entered %d", x);

return(0);

}

12

Output:

Enter an integer - 89

You entered 89

 fread() and fwrite().

These functions allow the reading and writing of blocks of any type of data.

Prototypes:

size_t fread(void *buffer, size_t num_bytes, size_t count, FILE *fp);

size_t fwrite(const void *buffer, size_t num_bytes, size_t count, FILE *fp);

For fread(), buffer is a pointer to a region of memory that will receive the data from the file.

For fwrite(), buffer is a pointer to the information that will be written to the file. The value of count

determines how many items are read or written, with each item being num_bytes bytes in length.

Finally, fp is a file pointer to a previously opened stream.

The fread() function returns the number of items read. This value may be less than count if

the end of the file is reached or an error occurs. The fwrite() function returns the number of items

written. This value will equal count unless an error occurs.

Program:

#include <cstdio>

#include <cstring>

#include<iostream>

using namespace std;

int main()

{

int retVal;

FILE *fp;

char buffer[] = "Writing to a file using fwrite.";

fp = fopen("data.txt","wb");

retVal = fwrite(buffer,sizeof(buffer),1,fp);

cout << "fwrite returned " << retVal;

return 0;

}

Output:

fwrite returned 1

Program:

#include <cstdio>

#include <cstring>

#include<iostream>

using namespace std;

int main()

{

 FILE *fp;

 char buffer[100];

 fp = fopen("data.txt","rb");

 while(!feof(fp))

 {

13

 fread(buffer,sizeof(buffer),1,fp);

 cout << buffer;

 }

 return 0;

}

Output:

Writing to a file using fwrite.

Program:

#include <cstdio>

#include <cstring>

#include<iostream>

using namespace std;

int main()

{

FILE *fp;

double d = 12.23;

int i = 101;

long l = 123023L;

if((fp=fopen("test", "wb+"))==NULL)

{

printf("Cannot open file.\n");

exit(1);

}

fwrite(&d, sizeof(double), 1, fp);

fwrite(&i, sizeof(int), 1, fp);

fwrite(&l, sizeof(long), 1, fp);

rewind(fp);

fread(&d, sizeof(double), 1, fp);

fread(&i, sizeof(int), 1, fp);

fread(&l, sizeof(long), 1, fp);

printf("%f %d %ld", d, i, l);

fclose(fp);

return 0;

}

Output:

12.230000 101 123023

 fseek()

You can perform random-access read and write operations using the C I/O system with the help of

fseek(), which sets the file position indicator.

Prototype : int fseek(FILE *fp, long int numbytes, int origin);

Here, fp is a file pointer returned by a call to fopen(). numbytes is the number of bytes from

origin that will become the new current position, and origin is one of the following macros:

Origin Macro Name

Beginning of file SEEK_SET

Current position SEEK_CUR

End of file SEEK_END

Program:

#include <cstdio>

14

#include <cstring>

#include<iostream>

using namespace std;

int main(int argc, char *argv[])

{

 FILE * pFile;

 pFile = fopen ("example.txt" , "wb");

 fputs ("This is an apple." , pFile);

 fseek (pFile , 9 , SEEK_SET);

 fputs (" sam" , pFile);

 fclose (pFile);

 return 0;

}

Output:

After this code is successfully executed, the file example.txt contains:

 This is a sample.

 fprintf() and fscanf()

These functions behave exactly like printf() and scanf() except that they operate with files.

Prototypes:

int fprintf(FILE *fp, const char *control_string,. . .);

int fscanf(FILE *fp, const char *control_string,. . .);

where fp is a file pointer returned by a call to fopen(). fprintf() and fscanf() direct their I/O

operations to the file pointed to by fp.

Program:

#include <cstdio>

#include <cstring>

#include<iostream>

using namespace std;

int main(int argc, char *argv[])

{

FILE *fp;

char name[50];

int age;

fp = fopen("example.txt","w");

fprintf(fp, "%s %d", "Tim", 9);

fclose(fp);

fp = fopen("example.txt","r");

fscanf(fp, "%s %d", name, &age);

fclose(fp);

printf("Hello %s, You are %d years old\n", name, age);

return 0;

}

Output:

Hello Tim, You are 9 years old

15

Object-oriented I/O system defined by C++

C++ Streams

The C++ I/O system operates through streams. A stream is a logical device that either

produces or consumes information.

A stream is linked to a physical device by the I/O system. All streams behave the same, the

same I/O functions can operate

Stream classes’ hierarchy

Standard C++ provides support for its I/O system in <iostream> header, which gives a set of

class hierarchies is defined that supports I/O operations.

The C++ I/O system is built upon two related but different class hierarchies.

 basic_streambuf
Low-level I/O class is called basic_streambuf. This class supplies the basic, low-level input and

output operations, and provides the underlying support for the entire C++ I/O system. Unless you are

doing advanced I/O programming, you will not need to use basic_streambuf directly.

 basic_ios
The class hierarchy that you will most commonly be working with is derived from basic_ios.

This is a high-level I/O class that provides formatting, error checking, and status information

related to stream I/O.

 ios_base
A base class for basic_ios is called ios_base. basic_ios is used as a base for several derived

classes, including basic_istream, basic_ostream, and basic_iostream. These classes are used to

create streams capable of input, output, and input/output, respectively.

16

istream_withassign, ostream_withassign and iostream_withassign add assignment operators

to these classes.

Class hierarchies for 8-bit characters and wide characters.

C++'s Predefined Streams

When a C++ program begins execution, four built-in streams are automatically opened.

They are:

 Stream Meaning Default Device

 cin Standard input Keyboard

 cout Standard output Screen

 cerr Standard error output Screen

 clog Buffered version of cerr Screen

Streams cin, cout, and cerr correspond to C's stdin, stdout, and stderr. By default, the

standard streams are used to communicate with the console.

 Standard C++ also defines these four additional streams: win, wout, werr, and wlog. These

are wide-character versions of the standard streams. Wide characters are of type wchar_t and are

generally 16-bit quantities. Wide characters are used to hold the large character sets associated with

some human languages.

Operator Overloading

Overloading << and >>

<< and the >> operators are overloaded in C++ to perform I/O. the << output operator is

referred to as the insertion operator because it inserts characters into a stream. Likewise, the >> input

operator is called the extraction operator because it extracts characters from a stream. The functions

that overload the insertion and extraction operators are generally called inserters and extractors,

respectively.

Creating Your Own Inserters

It is quite simple to create an inserter for a class that you create.

General form:

ostream &operator<<(ostream &stream, class_type obj)

17

{

// body of inserter

return stream;

}

The function returns a reference to a stream of type ostream. The first parameter to the

function is a reference to the output stream. The second parameter is the object being inserted.

Within an inserter function, you may put any type of procedures or operations that you want.

inserters cannot be members of the class for which they are defined seems to be a serious problem

because they cannot access the private elements of a class. Solution is to Make the inserter a friend of

the class

An inserter need not be limited to handling only text. An inserter can be used to output data in

any form like CAD plotters, graphics images, dialog boxes etc.

Creating Your Own Extractors

Extractors are the complement of inserters.

General form
istream &operator>>(istream &stream, class_type &obj)

{

// body of extractor

return stream;

}

Extractors return a reference to a stream of type istream, which is an input stream. The first

parameter must also be a reference to a stream of type istream. The second parameter must be a

reference to an object of the class for which the extractor is overloaded. This is so the object can be

modified by the input (extraction) operation.

Program:

#include <iostream>

#include <cstring>

using namespace std;

class Box

{

double height;

double width;

double vol ;

public :

friend istream & operator >> (istream &, Box &);

friend ostream & operator << (ostream &, Box &);

};

istream & operator >> (istream &stream, Box &b)

{

cout << "Enter Box Height: " ; stream >> b.height ;

cout << "Enter Box Width : " ; stream >> b.width ;

return (stream) ;

}

ostream & operator << (ostream &stream, Box &b)

{

stream << endl << endl;

stream << "Box Height : " << b.height << endl ;

18

stream << "Box Width : " << b.width << endl ;

b.vol = b.height * b.width ;

stream << "The Volume of Box : " << b.vol << endl;

return(stream) ;

}

 int main()

 {

Box b1;

cin >> b1;

cout << b1;

}

Output:

Enter Box Height: 1

Enter Box Width : 2

Box Height : 1

Box Width : 2

The Volume of Box : 2

Creating Your Own Manipulator Functions

We can customize C++'s I/O system by creating your own manipulator functions. Custom

manipulators are important for two main reasons.

 You can consolidate a sequence of several separate I/O operations into one manipulator.

 When you need to perform I/O operations on a nonstandard device. For example, you might use a

manipulator to send control codes to a special type of printer or to an optical recognition system.

Types of manipulators

There are two basic types of manipulators:

 Those that operate on input streams

 Those that operate on output streams.

Apart from this , there is one more classification,

 Manipulators that take an argument

The procedures necessary to create a parameterized manipulator vary widely from compiler to

compiler, and even between two different versions of the same compiler. For this reason, you must

consult the documentation to your compiler for instructions on creating parameterized manipulators

 Manipulators that don't.take an argument

The creation of parameterless manipulators is straightforward and the same for all

compilers.

General Form

ostream &manip-name(ostream &stream)

{

// your code here

return stream;

}

manip-name is the name of the manipulator. a reference to a stream of type ostream is

returned. This is necessary if a manipulator is used as part of a larger I/O expression.

Using an output manipulator is particularly useful for sending special codes to a device. For

example, a printer may be able to accept various codes that change the type size or font, or that

19

position the print head in a special location. If these adjustments are going to be made frequently, they

are perfect candidates for a manipulator.

General Form

istream &manip-name(istream &stream)

{

// your code here

return stream;

}

An input manipulator receives a reference to the stream for which it was invoked. This stream

must be returned by the manipulator.

Program:

#include <iostream>

#include <iomanip>

#include <string>

#include <cctype>

using namespace std;

// A simple output manipulator that sets the fill character to * and sets the field width to 10.

ostream &star_fill(ostream &stream)

{

 stream << setfill('*') << setw(10);

 return stream;

}

// A simple input manipulator that skips leading digits.

istream &skip_digits(istream &stream)

{

char ch;/*w w w . j ava 2s.c o m*/

do

{

ch = stream.get();

} while(!stream.eof() && isdigit(ch));

if(!stream.eof()) stream.unget();

return stream;

}

int main()

{

string str;

// Demonstrate the custom output manipulator.

cout << 512 << endl;

cout << star_fill << 512 << endl;

// Demonstrate the custom input manipulator.

cout << "Enter some characters: ";

cin >> skip_digits >> str;

cout << "Contents of str: " << str;

 return 0;

}

Output:

512

*******512

Enter some characters: abc

20

Contents of str: abc

File streams and String streams

String streams

C++ provides a <sstream> header , which uses the same public interface to support I/O

between a program and string object.

The string streams is based on istringstream(subclass of istream), and

ostringstream(subclass of ostream) and bidirectional stringstream(subclass of iostream),

General Form:

typedef basic_istringstream<char>istringstream;

typedef basic_ostringstream<char>ostringstream;

Stream input can be used to validate input data,stream output can be used to format the output.

Ostringstream constructors

explicit ostringstream(ios::openmode mode=ios::out);//default with empty string

explicit ostringstream(const string &str, ios::openmode

mode=ios::out);//with initial str

string str() const;//get contents

void str(const string &s)//set contents

Example:

ostringstream sout;

//write into string buffer

sout<<”apple”<<endl;

sout<<”orange”<<endl;

//get contents

cout<<sout.str()<<endl;

ostringstream is responsible for dynamic memory allocation and management.

istringstream constructors

explicit istringstream(ios::openmode mode=ios::in); //default with empty string

explicit istringstream(const string &str, ios::openmode mode=ios::in); //with initial str

Example:

istringstream sin(“123 12.34 hello”);

//read from buffer

int I;

double d;

string s;

sin>>i>>d>>s;

cout<<i<<”,”<<d<<”,”<<s<<endl;

stringstream constructors
explicit stringstream(ios::openmode mode = ios::in | ios::out);

explicit stringstream(const string &str,

ios::openmode mode = ios::in | ios::out);

Program:

// Demonstrate string streams.

#include <iostream>

#include <sstream>

using namespace std;

21

int main()

{

stringstream s("This is initial string.");

// get string

string str = s.str();

cout << str << endl;

// output to string stream

s << "Numbers: " << 10 << " " << 123.2;

int i;

double d;

s >> str >> i >> d;

cout << str << " " << i << " " << d;

return 0;

}

Output:

This is initial string.

Numbers: 10 123.2

File streams

Formatted file streams

To perform file I/O, you must include the header <fstream> in your program. It defines

several classes, including ifstream, ofstream, and fstream. These classes are derived from istream,

ostream, and iostream, respectively. Remember, istream, ostream, and iostream are derived from

ios, so ifstream, ofstream, and fstream also have access to all operations defined by ios

Opening and Closing a File

open()

In C++, you open a file by linking it to a stream. Before you can open a file, you must first

obtain a stream.

There are three types of streams:

Input

To create an input stream, you must declare the stream to be of class ifstream.

Output

To create an output stream, you must declare it as class ofstream.

Input/Output

Streams that will be performing both input and output operations must be declared as class

fstream.

General form for creating streams

ifstream in; // input

ofstream out; // output

fstream io; // input and output

Once you have created a stream, one way to associate it with a file is by using open(). This

function is a member of each of the three stream classes.

Prototype:

void ifstream::open(const char *filename, ios::openmode mode = ios::in);

void ofstream::open(const char *filename, ios::openmode mode = ios::out | ios::trunc);

void fstream::open(const char *filename, ios::openmode mode = ios::in | ios::out);

22

filename is the name of the file; it can include a path specifier. The value of mode determines how

the file is opened. It must be one or more of the following values

 ios::app : Including ios::app causes all output to that file to be appended to the end. This

value can be used only with files capable of output.

 ios::ate : Including ios::ate causes a seek

to the end of the file to occur when the file is opened.

 ios::in : The ios::in value specifies that the file is capable of input.

 ios::out : The ios::out value specifies that the file is capable of output.

 ios::binary : The ios::binary value causes a file to be opened in binary mode. By default, all files

are opened in text mode.

 ios::trunc : The ios::trunc value causes the contents of a preexisting file by the same name to be

destroyed, and the file is truncated to zero length.

Checking open() is successful or not

a. If open() fails, the stream will evaluate to false when used in a Boolean expression. Therefore,

before using a file, you should test to make sure that the open operation succeeded.

Example:

 if(!mystream) {

cout << "Cannot open file.\n";

// handle error

}

b. You can also check to see if you have successfully opened a file by using the is_open() function,

which is a member of fstream, ifstream, and ofstream.

Prototype:

bool is_open();

It returns true if the stream is linked to an open file and false otherwise.

Example:

if(!mystream.is_open()) {

cout << "File is not open.\n";

// ...

close()
To close a file, use the member function close()

Prototype: mystream.close();

The close() function takes no parameters and returns no value.

Reading and Writing Text Files

It is very easy to read from or write to a text file. Simply use the << and >> operators the

same way you do when performing console I/O, except that instead of using cin and cout, substitute a

stream that is linked to a file.

Program:

#include <iostream>

#include <fstream>

using namespace std;

int main()

{

ifstream in("INVNTRY"); // input

if(!in)

{

cout << "Cannot open INVENTORY file.\n";

return 1;

23

}

char item[20];

float cost;

in >> item >> cost;

cout << item << " " << cost << "\n";

in >> item >> cost;

cout << item << " " << cost << "\n";

in >> item >> cost;

cout << item << " " << cost << "\n";

in.close();

ofstream out;

out.open("INVNTRY");// output, normal file

if(!out)

{

cout << "Cannot open INVENTORY file.\n";

return 1;

}

out << "Radios " << 39.95 << endl;

out << "Toasters " << 19.95 << endl;

out << "Mixers " << 24.80 << endl;

out.close();

return 0;

}

Output:

Radios 39.95

Toasters 19.95

Mixers 24.8

Unformatted and Binary I/O

There will be times when you need to store unformatted (raw) binary data, not text. When

performing binary operations on a file , openshould use ios::binary mode specifier

 get()
get() will read a character

General form: istream &get(char &ch);

reads a single character and puts that value in ch. It returns a reference to the stream

Overloading of get()

The get() function is overloaded in several different ways.

 Prototypes:
istream &get(char *buf, streamsize num);

reads characters into the array pointed to by buf until either num-1

istream &get(char *buf, streamsize num, char delim);

reads characters into the array pointed to by buf until either num-1 characters have been read,

the character specified by delim has been found, or the end of the file has been encountered.

int get();

returns the next character from the stream

 put()
put() will write a character.

24

General form: ostream &put(char ch);

writes ch to the stream and returns a reference to the stream.

 read() and write()

Used to read and write blocks of binary data.

Prototypes:

istream &read(char *buf, streamsize num);

reads num characters from the invoking stream and puts them in the buffer pointed to by buf.

ostream &write(const char *buf, streamsize num);

writes num characters to the invoking stream from the buffer pointed to by buf.

 getline()

It also performs input. It is a member of each input stream class.

Prototypes:

istream &getline(char *buf, streamsize num);

reads characters into the array pointed to by buf until either num-1

istream &getline(char *buf, streamsize num, char delim);

reads characters into the array pointed to by buf until either num−1 characters have been read,

the character specified by delim has been found

 Detecting EOF

You can detect when the end of the file is reached by using the member function eof()

Prototype: bool eof();

It returns true when the end of the file has been reached; otherwise it returns false.

 ignore() Function

You can use the ignore() member function to read and discard characters from the input stream.

Prototype:

istream &ignore(streamsize num=1, int_type delim=EOF);

It reads and discards characters until either num characters have been ignored (1 by default) or

the character specified by delim is encountered (EOF by default).

 peek()
You can obtain the next character in the input stream without removing it from that stream by

using peek().

Prototype: int_type peek();

It returns the next character in the stream or EOF if the end of the file is encountered.

 putback()
You can return the last character read from a stream to that stream by using putback().

Prototype : istream &putback(char c);

where c is the last character read.

 flush()
We can force the information to be physically written to disk before the buffer is full by calling

flush().

Prototype: ostream &flush();

Random Access

You perform random access by using the seekg() and seekp().

 seekg()

The seekg() function moves the associated file's current get pointer offset number

25

of characters from the specified origin, which must be one of these three values:

ios::beg Beginning-of-file

ios::cur Current location

ios::end End-of-file

Prototype: istream &seekg(off_type offset, seekdir origin);

 seekp()

The seekp() function moves the associated file's current put pointer offset number of

characters from the specified origin

Prototype: ostream &seekp(off_type offset, seekdir origin);

Obtaining the Current File Position

You can determine the current position of each file pointer by using these functions:

Prototypes: pos_type tellg();

 pos_type tellp();

Here, pos_type is a type defined by ios that is capable of holding the largest value that

either function can return.

You can use the values returned by tellg() and tellp() as arguments to the following forms of

seekg() and seekp(), respectively.

istream &seekg(pos_type pos);

ostream &seekp(pos_type pos);

Error handling during files operations

 We have been opening and using the files for reading and writing on the assumption that

everything is fine with the files. This may not be true always true.

 For instance, one of the following things may happen when dealing with the files,

1. A file which we are attempting to open for reading does not exists

2. The file name used for a new file may already exists

3. We may attempt an invalid operation such as reading past the EOF.

4. There may not be any space in the disk for storing more data.

5. We may use an invalid file name.

6. We may attempt to perform an operation when the file is not opened for that purpose.

We can handle these types of error situations in the following ways,

a. I/O Status

The C++ I/O system maintains status information about the outcome of each I/O operation. The

current state of the I/O system is held in an object of type iostate, which is an enumeration defined by

ios that includes the following members.

Name Meaning

ios::goodbit No error bits set

ios::eofbit 1 when end-of-file is encountered; 0 otherwise

ios::failbit 1 when a (possibly) nonfatal I/O error has occurred;0 otherwise

ios::badbit 1 when a fatal I/O error has occurred; 0 otherwise

There are two ways in which you can obtain I/O status information.

 Call the rdstate() function.

Prototype: iostate rdstate();

It returns the current status of the error flags.

 We can determine if an error has occurred is by using one or more of these functions:

bool bad(); The bad() function returns true if badbit is set.

bool eof(); returns true when end of the file has reached

bool fail(); The fail() returns true if failbit is set.

26

bool good(); The good() function returns true if there are no errors. Otherwise, it returns

false.

Clearing an Error

Once an error has occurred, it may need to be cleared before your program continues.

To do this, use the clear() function.

Prototype: void clear(iostate flags=ios::goodbit);

If flags is goodbit (as it is by default), all error flags are cleared. Otherwise, set flags as you

desire.

Formatted I/O.

The C++ I/O system allows you to format I/O operations. There are two related but

conceptually different ways that you can format data.

1. Directly access members of the ios class.(flags and functions in ios class)

2. Special functions called manipulators

Formatting Using the ios Members

Each stream has associated with it a set of format flags that control the way information is

formatted.

a. Flags

The ios class declares a bitmask enumeration called fmtflags in which the following values are

defined.

 When the skipws flag is set, leading white-space characters (spaces, tabs, and newlines) are

discarded when performing input on a stream. When skipws is cleared, white-space characters

are not discarded.

 When the left flag is set, output is left justified.

 When right is set, output is right justified.

 When the internal flag is set, a numeric value is padded to fill a field by inserting spaces

between any sign or base character.

 oct flag causes output to be displayed in octal.

 Setting the hex flag causes output to be displayed in hexadecimal.

 To return output to decimal, set the dec flag.

 Setting showbase causes the base of numeric values to be shown. For example, if the conversion

base is hexadecimal, the value 1F will be displayed as 0x1F.

 By default, when scientific notation is displayed, the e is in lowercase. Also, when a hexadecimal

value is displayed, the x is in lowercase. When uppercase is set, these characters are displayed

in uppercase.

 Setting showpos causes a leading plus sign to be displayed before positive values.

 Setting showpoint causes a decimal point and trailing zeros to be displayed for all floating-point

output—whether needed or not.

 By setting the scientific flag, floating-point numeric values are displayed using scientific

notation. When fixed is set, floating-point values are displayed using normal notation. When

neither flag is set, the compiler chooses an appropriate method.

 When unitbuf is set, the buffer is flushed after each insertion operation.

 When boolalpha is set, Booleans can be input or output using the keywords true and false.

 Since it is common to refer to the oct, dec, and hex fields, they can be collectively referred to as

basefield.

 Similarly, the left, right, and internal fields can be referred to as adjustfield.

 Finally, the scientific and fixed fields can be referenced as floatfield.

Setting the Format Flags

To set a flag, use the setf() function. This function is a member of ios.

27

Common form: fmtflags setf(fmtflags flags);

This function returns the previous settings of the format flags and turns on those flags

specified by flags.

Example: stream.setf(ios::showpos);

stream is the stream you wish to affect.

NOTE: The format flags are defined within the ios class, you must access their values by

using ios and the scope resolution operator.

Clearing Format Flags

The complement of setf() is unsetf(). This member function of ios is used to clear one

or more format flags.

General form: void unsetf(fmtflags flags);

The flags specified by flags are cleared.

Overloaded Form of setf()

There is an overloaded form of setf() .

General form: fmtflags setf(fmtflags flags1, fmtflags flags2);

In this version, only the flags specified by flags2 are affected. the most common use of the

two-parameter form of setf() is when setting the number base, justification, and format flags.

Program:

#include <iostream>

using namespace std;

int main ()

{

 cout.setf (ios::uppercase | ios::scientific);

 cout << 100.12; // displays 1.001200E+02

 cout.unsetf (ios::uppercase); // clear uppercase

 cout << " \n" << 100.12 << endl; // displays 1.001200e+02

 //OVERLOADED FORM OF setf

 cout.setf (ios::showpoint | ios::showpos, ios::showpoint);

 cout << 100.0<<endl; // displays 100.000, not +100.000

 //TWO PARAMETER FORM of setf

 cout.setf(ios::hex, ios::basefield);

 cout << 100; // this displays 64

 return 0;

}

Output:

1.001200E+02

1.001200e+02

1.000000e+02

64

Setting All Flags

The flags() function has a second form that allows you to set all format flags associated with

a stream.

Prototype: fmtflags flags(fmtflags f);

When you use this version, the bit pattern found in f is used to set the format flags associated

with the stream. Thus, all format flags are affected. The function returns the previous settings.

28

Example: cout.flags(f);

Program:

#include <iostream>

using namespace std;

void showflags();

int main()

{

// show default condition of format flags

showflags();

// showpos, showbase, oct, right are on, others off

ios::fmtflags f = ios::showpos | ios::showbase | ios::oct | ios::right;

cout.flags(f); // set all flags

showflags();

return 0;

}

// This function displays the status of the format flags.

void showflags()

{

ios::fmtflags f;

long i;

f = cout.flags(); // get flag settings

// check each flag

for(i=0x4000; i; i = i >> 1)

if(i & f) cout << "1 ";

else cout << "0 ";

cout << " \n";

}

Output:

0 0 1 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 1 0 1 1 0 0 0 0 0 0

b. Functions

There are three member functions defined by ios.

 width()
By default, when a value is output, it occupies only as much space as the number of

characters it takes to display it. However, you can specify a minimum field width by using the width()

function.

Prototype; streamsize width(streamsize w);

Here, w becomes the field width, and the previous field width is returned. In some

implementations, the field width must be set before each output. If it isn't, the default field width is

used. The streamsize type is defined as some form of integer by the compiler.

After you set a minimum field width, when a value uses less than the specified width, the

field will be padded with the current fill character (space, by default) to reach the field width. If the

size of the value exceeds the minimum field width, the field will be overrun. No values are truncated.

 precision()
When outputting floating-point values, you can determine the number of digits of precision by

using the precision() function.

Prototype: streamsize precision(streamsize p);

29

The precision is set to p, and the old value is returned. The default precision is 6. In some

implementations, the precision must be set before each floating-point output. If it is not, then the

default precision will be used.

 fill()
By default, when a field needs to be filled, it is filled with spaces. You can specify the fill

character by using the fill() function.

Prototype: char fill(char ch);

After a call to fill(), ch becomes the new fill character, and the old one is returned.

Overloaded forms of width(), precision(), and fill()

There are overloaded forms of width(), precision(), and fill() that obtain but do not change

the current setting. These forms are shown here:

char fill();

streamsize width();

streamsize precision();

Program:

#include <iostream>

using namespace std;

int main ()

{

 cout.precision (4);

 cout.width (10);

 cout << 10.12345 << "\n"; // displays 10.12

 cout.fill ('*');

 cout.width (10);

 cout << 10.12345 << "\n"; // displays *****10.12

// field width applies to strings, too

 cout.width (10);

 cout << "Hi!" << "\n"; // displays *******Hi!

 cout.width (10);

 cout.setf (ios::left); // left justify

 cout << 10.12345; // displays 10.12*****

 return 0;

}

Output:

 10.12

*****10.12

*******Hi!

10.12*****

Using Manipulators to Format I/O

The second way you can alter the format parameters of a stream is through the use of special

functions called manipulators that can be included in an I/O expression. many of the I/O manipulators

parallel member functions of the ios class.

30

31

To access manipulators that take parameters (such as setw()), you must include <iomanip>

in your program.

Program:

#include <iostream>

#include <iomanip>

using namespace std;

int main ()

{

 cout << hex << 100 << endl;

 cout << setfill ('?') << setw (10) << 2343.0;

 return 0;

}

Output:

64

??????2343

32

Advantage

The main advantage of using manipulators instead of

the ios member functions is that they often allow more compact code to be written.

You can use the setiosflags() manipulator to directly set the various format flags

related to a stream.

Program:

#include <iostream>

#include <iomanip>

using namespace std;

int main ()

{

 cout << setiosflags (ios::showpos);

 cout << setiosflags (ios::showbase);

 cout << 123 << " " << hex << 123;

 return 0;

}

+123 0x7b

1

UNIT-V

EXCEPTION HANDILING

INDRODUCTION

Common types of Errors

 The common types of errors are logic errors and syntactic errors.

Logic Errors: These occur due to poor understanding of the problem and solution procedure.

Examples: Assigning a value to the wrong variable, multiplying 2 numbers instead of adding

them etc.

Syntactic Errors: These occur due to poor understanding of the language itself.

Examples: Spelling mistakes, missing out quotes or brackets or semicolon etc.

 Apart from these two, one more type of errors is Exception.

Definition of Exception: Exceptions are run time errors or unusual conditions that a program

may encounter while executing.

Examples: Division by zero, access to an array outside of its bounds, running out of memory or

disk space.

Exception Handling

 It is a C++ built in language feature that allows us to manage run time errors in an orderly

fashion. Using exception handling, your program can automatically invoke an error-handling

routine when an error occurs.

BENEFITS OF EXCEPTION HANDLING

1. Automation: it automates much of the error-handling code that previously had to be coded

"by hand" in any large program.

2. Separation of Error Handling code from Normal Code: In traditional error handling

codes, there are always if else conditions to handle errors. These conditions and the code to

handle errors get mixed up with the normal flow. This makes the code less readable and

maintainable. With try catch blocks, the code for error handling becomes separate from the

normal flow.

3. Functions can handle any exceptions they choose: A function can throw many exceptions,

but may choose to handle some of them.

4. Grouping of Error Types: In C++, both basic types and objects can be thrown as exception.

We can group or categorize them according to types.

5. Handles the occurring of error and allows normal execution of the program.

EXCEPTION HANDLING FUNDAMENTALS

(THE TRY BLOCK, CATCHING AN EXCDEPTION, THROWING AN EXCCEPTION)

C++ exception handling is built upon three keywords: try, catch, and throw

 The program statements that you want to monitor for exceptions are contained in a try block.

 If an exception (i.e., an error) occurs within the try block, it is thrown using throw

 When an exception is thrown, it is caught by its corresponding catch statement, which

processes the exception. There can be more than one catch statement associated with a try.

Which catch statement is used is determined by the type of the exception.

2

General form of try and catch

 try {

// try block

}

catch (type1 arg)

{

// catch block

}

catch (type2 arg)

 {

// catch block

 }

catch (type3 arg)

 {

// catch block

 }

 . . .

catch (typeN arg)

{

// catch block

 }

General form of the throw

throw exception;

Program:

// A simple exception handling example.

#include <iostream>

using namespace std;

int main ()

{

 cout << "Start\n";

 try

 { // start a try block

 cout << "Inside try block\n";

 throw 100; // throw an error

 cout << "This will not execute";

 }

 catch (int i)

 { // catch an error

 cout << "Caught an exception -- value is: ";

 cout << i << "\n";

 }

 cout << "End";

 return 0;

3

}

Output:

Start

Inside try block

Caught an exception -- value is: 100

End

Abnormal Termination

The type of the exception must match the type specified in a catch statement. Usually, the

code within a catch statement attempts to remedy an error by taking appropriate action. If the

error can be fixed, execution will continue with the statements following the catch. However,

often an error cannot be fixed i.e. throw an exception for which there is no applicable catch

statement, an abnormal program termination may occur. Throwing an unhandled exception

causes the standard library function terminate () to be invoked. By default, terminate () calls

abort() to stop your program.

Program:

// This example will not work.

#include <iostream>

using namespace std;

int main ()

{

 cout << "Start\n";

 try

 { // start a try block

 cout << "Inside try block\n";

 throw 100; // throw an error

 cout << "This will not execute";

 }

 catch (double i)

 { // won't work for an int exception

 cout << "Caught an exception -- value is: ";

 cout << i << "\n";

 }

 cout << "End";

 return 0;

}

Output:

Start

Inside try block

terminate called after throwing an instance of 'int'

Aborted (core dumped)

4

Throwing an exception from outside the try block

An exception can be thrown from outside the try block as long as it is thrown by a

function that is called from within try block.

Program:

/* Throwing an exception from a function outside the try block. */

#include <iostream>

using namespace std;

void

Xtest (int test)

{

 cout << "Inside Xtest, test is: " << test << "\n";

 if (test)

 throw test;

}

int main ()

{

 cout << "Start\n";

 try

 { // start a try block

 cout << "Inside try block\n";

 Xtest (0);

 Xtest (1);

 Xtest (2);

 }

 catch (int i)

 { // catch an error

 cout << "Caught an exception -- value is: ";

 cout << i << "\n";

 }

 cout << "End";

 return 0;

}

Output:

Start

Inside try block

Inside Xtest, test is: 0

Inside Xtest, test is: 1

Caught an exception -- value is: 1

End

Localize a try/catch to a function

A try block can be localized to a function. When this is the case, each time the function is

entered, the exception handling relative to that function is reset.

5

Program:

#include <iostream>

using namespace std;

// Localize a try/catch to a function.

void

Xhandler (int test)

{

 try

 {

 if (test)

 throw test;

 }

 catch (int i)

 {

 cout << "Caught Exception #: " << i << '\n';

 }

}

int main ()

{

 cout << "Start\n";

 Xhandler (1);

 Xhandler (2);

 Xhandler (0);

 Xhandler (3);

 cout << "End";

 return 0;

}

Output:

Start

Caught Exception #: 1

Caught Exception #: 2

Caught Exception #: 3

End

Catch statements when no exception is thrown

The code associated with a catch statement will be executed only if it catches an

exception. Otherwise, execution simply bypasses the catch altogether. When no exception is

thrown, the catch statement does not execute.

Program:

#include <iostream>

using namespace std;

int main ()

{

6

 cout << "Start\n";

 try

 { // start a try block

 cout << "Inside try block\n";

 cout << "Still inside try block\n";

 }

 catch (int i)

 { // catch an error

 cout << "Caught an exception -- value is: ";

 cout << i << "\n";

 }

 cout << "End";

 return 0;

}

Output:

Start

Inside try block

Still inside try block

End

Using multiple catch Statements

There can be more than one catch associated with a try. However, each catch must catch

a different type of exception. Which catch statement is used is determined by the type of the

exception.

Program:

#include <iostream>

using namespace std;

// Different types of exceptions can be caught.

void

Xhandler (int test)

{

 try

 {

 if (test)

 throw test;

 else

 throw "Value is zero";

 }

 catch (int i)

 {

 cout << "Caught Exception #: " << i << '\n';

 }

 catch (const char *str)

 {

7

 cout << "Caught a string: ";

 cout << str << '\n';

 }

}

int main ()

{

 cout << "Start\n";

 Xhandler (1);

 Xhandler (2);

 Xhandler (0);

 Xhandler (3);

 cout << "End";

 return 0;

}

Output:

Start

Caught Exception #: 1

Caught Exception #: 2

Caught a string: Value is zero

Caught Exception #: 3

End

CATCHING ALL EXCEPTIONS

 Using multiple catch statements we can write a separate catch statements for each type.

But this is a complicated task. In these circumstances we want an exception handler to catch all

exceptions instead of just a certain type.

General form:

catch(...)

{

// process all exceptions

}

Here, the ellipsis matches any type of data.

Program:

// This example catches all exceptions.

#include <iostream>

using namespace std;

void

Xhandler (int test)

{

 try

 {

 if (test == 0)

8

 throw test; // throw int

 if (test == 1)

 throw 'a'; // throw char

 if (test == 2)

 throw 123.23; // throw double

 }

 catch (...)

 { // catch all exceptions

 cout << "Caught One!\n";

 }

}

int main ()

{

 cout << "Start\n";

 Xhandler (0);

 Xhandler (1);

 Xhandler (2);

 cout << "End";

 return 0;

}

Output:

Start

Caught One!

Caught One!

Caught One!

End

One very good use for catch (...) is as the last catch of a cluster of catches which catch all

exceptions that you don't want to handle explicitly. Also, by catching all exceptions, you prevent

an unhandled exception from causing an abnormal program termination.

RETHROWING AN EXCEPTION

If you wish to rethrow an expression from within an exception handler, you may do so by

calling throw, by itself, with no exception.

Reason: It allows multiple handlers access to the exception. For example, perhaps one

exception handler manages one aspect of an exception and a second handler copes with another.

An exception can only be rethrown from within a catch block (or from any function called from

within that block). When you rethrow an exception, it will not be recaught by the same catch

statement. It will propagate outward to the next catch statement.

Program:

// Example of "rethrowing" an exception.

#include <iostream>

using namespace std;

9

void Xhandler ()

{

 try

 {

 throw "hello"; // throw a char *

 }

 catch (const char *)

 { // catch a char *

 cout << "Caught char * inside Xhandler\n";

 throw; // rethrow char * out of function

 }

}

int main ()

{

 cout << "Start\n";

 try

 {

 Xhandler ();

 }

 catch (const char *)

 {

 cout << "Caught char * inside main\n";

 }

 cout << "End";

 return 0;

}

Output:

Start

Caught char * inside Xhandler

Caught char * inside main

End

EXCEPTION SPECICATION (RESTRICTING EXCEPTIONS)

You can restrict the type of exceptions that a function can throw outside of itself i.e. we

are restricting a function to throw only certain specified exceptions .To accomplish these

restrictions, we must add a throw clause to a function definition.

General form

ret-type func-name(arg-list) throw(type-list)

{

// ...

}

only those data types contained in the comma-separated type-list may be thrown by the

function. If you don't want a function to be able to throw any exceptions, then use an empty list.

10

Attempting to throw an exception that is not supported by a function will cause the standard

library function unexpected () to be called. By default, this causes abort() to be called, which

causes abnormal program termination.

Program:

// Restricting function throw types.

#include <iostream>

using namespace std;

// This function can only throw ints, chars, and doubles.

void Xhandler (int test)

throw (int, char, double)

{

 if (test == 0)

 throw test; // throw int

 if (test == 1)

 throw 'a'; // throw char

 if (test == 2)

 throw 123.23; // throw double

}

int main ()

{

 cout << "start\n";

 try

 {

 Xhandler (0); // also, try passing 1 and 2 to Xhandler()

 }

 catch (int i)

 {

 cout << "Caught an integer\n";

 }

 catch (char c)

 {

 cout << "Caught char\n";

 }

 catch (double d)

 {

 cout << "Caught double\n";

 }

 cout << "end";

 return 0;

}

Output:

start

Caught an integer

11

end

A function can be restricted only in what types of exceptions it throws back to the try

block that called it. That is, a try block within a function may throw any type of exception so

long as it is caught within that function.The restriction applies only when throwing an exception

outside of the function.

// This function can throw NO exceptions!

void Xhandler(int test) throw()

{

/* The following statements no longer work. Instead,

they will cause an abnormal program termination. */

if(test==0) throw test;

if(test==1) throw 'a';

if(test==2) throw 123.23;

}

STACK UNWINDING

 Stack unwinding is a process of calling all destructors for all automatic objects

constructed at run time when an exception is thrown. The objects are destroyed in the reverse

order of their formation.

 When an exception is thrown, the runtime mechanism first searches for an appropriate

matching handler (catch) in the current scope. If no such handler exists, control is transferred

from the current scope to a higher block in the calling chain or in outward manner. - Iteratively,

it continues until an appropriate handler has been found. At this point, the stack has been

unwound and all the local objects that were constructed on the path from a try block to a throw

expression have been destroyed. - The run-time environment invokes destructors for all

automatic objects constructed after execution entered the try block. This process of destroying

automatic variables on the way to an exception handler is called stack unwinding.

Program:

#include <iostream>

#include <string>

using namespace std;

class MyClass

{

private:

 string name;

public:

 MyClass (string s):name (s)

 {

 }

 ~MyClass ()

12

 {

 cout << "Destroying " << name << endl;

 }

};

void fa ();

void fb ();

void fc ();

void fd ();

int main ()

{

 try

 {

 MyClass mainObj ("M");

 fa ();

 cout << "Mission accomplished!\n";

 }

 catch (const char *e)

 {

 cout << "exception: " << e << endl;

 cout << "Mission impossible!\n";

 }

 return 0;

}

void fa ()

{

 MyClass a ("A");

 fb ();

 cout << "return from fa()\n";

 return;

}

void fb ()

{

 MyClass b ("B");

 fc ();

 cout << "return from fb()\n";

 return;

}

void fc ()

{

 MyClass c ("C");

 fd ();

13

 cout << "return from fc()\n";

 return;

}

void fd ()

{

 MyClass d ("D");

 // throw "in fd(), something weird happened.";

 cout << "return from fd()\n";

 return;

}

Output:

return from fd()

Destroying D

return from fc()

Destroying C

return from fb()

Destroying B

return from fa()

Destroying A

Mission accomplished!

Destroying M

EXCEPTION OBJECT

 The exception object holds the error information about the exception that had occurred.

The information includes the type errors i.e. logic errors or run time error and state of the

program when the error occurred.

 An exception object is created as soon as exception occurs and it is passed to the

corresponding catch block as a parameter. The catch block contains the code to catch the

occurred exception.

An exception can be of any type, including class types that you create. Actually, in real-

world programs, most exceptions will be class types rather than built-in types. Perhaps the most

common reason that you will want to define a class type for an exception is to create an object

that describes the error that occurred. This information can be used by the exception handler to

help it process the error.

General Form:

try

{

Throw exception object;

}

catch(Exception &exceptionobject)

{

14

…

}

 When a throw expression is evaluated, an exception object is initialized from the value of

the expression. The exception object which is thrown gets its type from the static type of the

throw expression.

 Inside a catch block, the name initialized with the caught exception object is initialized

with this exception object

 The exception object is available only in catch block. You cannot use the exception object

outside the catch block.

Program:

#include <iostream>

#include <cstring>

using namespace std;

class MyException

{

public:

 char str_what[80];

 int what;

 MyException ()

 {

 *str_what = 0;

 what = 0;

 }

 MyException (char *s, int e)

 {

 strcpy (str_what, s);

 what = e;

 }

};

int main ()

{

 int i;

 try

 {

 cout << "Enter a positive number: ";

 cin >> i;

 if (i < 0)

 throw MyException ("Not Positive", i);

 }

 catch (MyException e)

 { // catch an error

 cout << e.str_what << ": ";

 cout << e.what << "\n";

15

 }

 return 0;

}

Output:

Enter a positive number: -1

Not Positive: -1

	#include <iostream>
	#include<conio.h>
	using namespace std;
	int main()
	{
	int i, j;
	for(i=0; i<5; i++)
	{ (1)
	for(j=0; j<=i; j++)
	{ (2)
	cout<<"* ";
	}
	cout<<"\n";
	} (1)
	getch();
	} (2)
	OUTPUT:
	PROGRAM 20: CHECK PALINDROME OR NOT
	#include <iostream> (1)
	#include<conio.h> (1)
	using namespace std; (1)
	int main() (1)
	{ (3)
	int num, rem, orig, rev=0;
	cout<<"Enter a number : ";
	cin>>num;
	orig=num;
	while(num!=0)
	{ (4)
	rem=num%10;
	rev=rev*10 + rem;
	num=num/10;
	} (3)
	if(rev==orig) // check if original number is equal to its reverse
	{ (5)
	cout<<"Palindrome";
	} (4)
	else
	{ (6)
	cout<<"Not Palindrome";
	} (5)
	getch(); (1)
	} (6)
	OUTPUT: (1)

